首页> 外文会议>IEEE 7th Annual Ubiquitous Computing, Electronics amp; Mobile Communication Conference >AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing
【24h】

AMP-B-SBL: An algorithm for clustered sparse signals using approximate message passing

机译:AMP-B-SBL:一种使用近似消息传递的集群稀疏信号算法

获取原文
获取原文并翻译 | 示例

摘要

Recently, we proposed an algorithm for the single measurement vector problem where the underlying sparse signal has an unknown clustered pattern. The algorithm is essentially a sparse Bayesian learning (SBL) algorithm simplified via the approximate message passing (AMP) framework. Treating the cluster pattern is controlled via a knob that accounts for the amount of clumpiness in the solution. The parameter corresponding to the knob is learned using expectation-maximization algorithm. In this paper, we provide further study by comparing the performance of our algorithm with other algorithms in terms of support recovery, mean-squared error, and an example in image reconstruction in a compressed sensing fashion.
机译:最近,我们提出了一种用于单个测量向量问题的算法,其中基础稀疏信号具有未知的聚集模式。该算法本质上是通过近似消息传递(AMP)框架简化的稀疏贝叶斯学习(SBL)算法。群集模式的处理通过旋钮控制,该旋钮可解决溶液中的结块现象。使用期望最大化算法学习对应于旋钮的参数。在本文中,我们通过在支持恢复,均方误差和压缩感知方式的图像重建示例方面比较我们的算法与其他算法的性能来提供进一步的研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号