首页> 外文会议>IEEE 25th Annual Conference on Computational Complexity >A New Sampling Protocol and Applications to Basing Cryptographic Primitives on the Hardness of NP
【24h】

A New Sampling Protocol and Applications to Basing Cryptographic Primitives on the Hardness of NP

机译:一种新的采样协议及其在基于NP硬度的密码基元基础上的应用

获取原文
获取原文并翻译 | 示例

摘要

We investigate the question of what languages can be decided efficiently with the help of a recursive collision-finding oracle. Such an oracle can be used to break collision-resistant hash functions or, more generally, statistically hiding commitments. The oracle we consider, $Sam_d$ where $d$ is the recursion depth, is based on the identically-named oracle defined in the work of Haitner et al. (FOCS '07). Our main result is a constant-round public-coin protocol ``$AMSam$'' that allows an efficient verifier to emulate a $Sam_d$ oracle for any constant depth $d = O(1)$ with the help of a $BPP^NP$ prover. $AMSam$ allows us to conclude that if $L$ is decidable by a $k$-adaptive randomized oracle algorithm with access to a $Sam_{O(1)}$ oracle, then $L in AM[k] cap coAM[k]$. The above yields the following corollary: assume there exists an $O(1)$-adaptive reduction that bases constant-round statistically hiding commitment on $NP$-hardness, then $NP subseteq coAM$ and the polynomial hierarchy collapses. The same result holds for any primitive that can be broken by $Sam_{O(1)}$ including collision-resistant hash functions and $O(1)$-round oblivious transfer where security holds statistically for one of the parties. We also obtain non-trivial (though weaker) consequences for $k$-adaptive reductions for any $k = poly(n)$. Prior to our work, most results in this research direction either applied only to non-adaptive reductions (citeauthor{BogdanovT06}, SIAM J. of Comp. '06 and citeauthor{AkaviaGGM06}, FOCS '06) or to one-way permutations (citeauthor{Brassard79} FOCS '79). The main technical tool we use to prove the above is a new constant-round public-coin protocol ($SWS$), which we believe to be of interest in its own right, that guarantees the following: given an efficient function $f$ on $n$ bits, let $D$ be the output distribution $D = f(U_n)$, then $SWS$ allows an efficient verifier Arthur to use an all-powerful prover Merlin's help to sample -n-na random $y getsr D$ along with a good multiplicative approximation of the probability $p_y = Pr_{y' getsr D}[y' = y]$. The crucial feature of $SWS$ is that it extends even to distributions of the form $D = f(U_cs)$, where $U_cs$ is the uniform distribution on an efficiently decidable subset $cs subseteq zo^n$ (such $D$ are called efficiently samplable with emph{post-selection}), as long as the verifier is also given a good approximation of the value $|cs|$.
机译:我们研究了借助递归冲突查找预言机可以有效地确定哪些语言的问题。这种预言机可用于破坏抗冲突的哈希函数,或更一般地,在统计上隐藏承诺。我们考虑的Oracle,$ Sam_d $,其中$ d $是递归深度,是基于Haitner等人的工作中定义的同名Oracle。 (FOCS '07)。我们的主要结果是一个恒定轮回的公共硬币协议``$ AMSam $'',它允许有效的验证者在$ BPP的帮助下,对于任何恒定深度$ d = O(1)$都可以模拟$ Sam_d $ oracle ^ NP $证明者。 $ AMSam $可以使我们得出结论,如果$ L $是由可访问$ Sam_ {O(1)} $ oracle的$ k $自适应随机oracle算法决定的,则AM [k] cap coAM中的$ L [ k] $。上面的推论得出以下推论:假设存在$ O(1)$的自适应减少,其基于$ NP $硬度进行连续一轮的统计隐藏承诺,然后$ NPsubseteq coAM $和多项式层次结构崩溃。对于可以被$ Sam_ {O(1)} $破坏的任何原语,包括抗碰撞哈希函数和$ O(1)$轮回遗忘的转移(安全性在一方中均在统计上成立),该结果也适用。对于任何$ k = poly(n)$,我们也可以获得$ k $自适应减少的非平凡(尽管较弱)结果。在我们进行工作之前,该研究方向上的大多数结果要么仅适用于非自适应归约(引用作者{BogdanovT06},Comp。'06的SIAM J.以及引用作者{AkaviaGGM06},FOCS '06),要么适用于单向排列( citeauthor {Brassard79} FOCS '79)。我们用来证明上述内容的主要技术工具是一个新的恒定轮公共硬币协议($ SWS $),我们相信它本身就是有趣的,它保证了以下几点:给定有效功能$ f $在$ n $位上,让$ D $为输出分布$ D = f(U_n)$,则$ SWS $允许有效的验证者Arthur使用功能强大的证明者Merlin的帮助来采样-n-na随机$ y getsr D $以及概率$ p_y = Pr_ {y'getsr D} [y'= y] $的良好乘法近似。 $ SWS $的关键特征在于它甚至可以扩展到$ D = f(U_cs)$形式的分布,其中$ U_cs $是有效可确定子集$ cssubseteq zo ^ n $(例如$ D只要验证者也得到值$ | cs | $的良好近似值,就可以使用emph {post-selection}来有效地简化$。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号