首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Object detection via foreground contour feature selection and part-based shape model
【24h】

Object detection via foreground contour feature selection and part-based shape model

机译:通过前景轮廓特征选择和基于零件的形状模型进行物体检测

获取原文

摘要

In this paper, we propose a novel approach for object detection via foreground feature selection and part-based shape model. It automatically learns a shape model from cluttered training images without need to explicitly given bounding box on objects. Our approach commences by extracting a set of feature descriptors, and iteratively selects the foreground features using Earth Movers Distances based matching. This leads to a part-based shape model that can be used for object detection. Experimental results show that the proposed method has comparable performance with the state-of-the-art shape-based detection methods but with less requirements on the data at the training stage.
机译:在本文中,我们提出了一种通过前景特征选择和基于零件的形状模型进行物体检测的新方法。它可以自动从混乱的训练图像中学习形状模型,而无需在对象上明确指定边界框。我们的方法开始于提取一组特征描述符,然后使用基于“地球移动距离”的匹配迭代地选择前景特征。这导致可用于对象检测的基于零件的形状模型。实验结果表明,该方法与基于形状的最新检测方法具有可比的性能,但在训练阶段对数据的要求却较低。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号