首页> 外文会议>ICPR 2012;International Conference on Pattern Recognition >Facial image-based gender classification using Local Circular Patterns
【24h】

Facial image-based gender classification using Local Circular Patterns

机译:使用局部圆形图案的基于面部图像的性别分类

获取原文

摘要

Gender is one of the most important demographic attributes of human beings, and recently automatic face-based gender classification has received increasing attentions due to its wide potential in many useful applications. To address such an issue, in this paper, we propose a novel variant of Local Binary Patterns (LBP), namely Local Circular Patterns (LCP). LCP makes use of clustering-based quantization instead of the binary coding strategy of the LBP operator, leading to an improvement in discriminative power. Meanwhile, thanks to the nature property of clustering-based quantization, LCP is more robust than LBP to noise. Experiments are carried out on the FERET database and the classification accuracy is up to 95.36%, clearly highlighting the effectiveness of the proposed method.
机译:性别是人类最重要的人口统计属性之一,由于基于自动的基于面部的性别分类在许多有用的应用中具有广泛的潜力,近来受到越来越多的关注。为了解决这个问题,在本文中,我们提出了一种新的局部二进制模式(LBP)的变体,即局部圆形模式(LCP)。 LCP利用基于聚类的量化代替LBP运算符的二进制编码策略,从而提高了判别能力。同时,由于基于聚类的量化的性质,LCP在噪声方面比LBP更为健壮。实验在FERET数据库上进行,分类准确率高达95.36%,清楚地表明了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号