首页> 外文会议>ICCSE 2012;International Conference on computer science & education >Prediction model of agricultural product's price based on the improved BP neural network
【24h】

Prediction model of agricultural product's price based on the improved BP neural network

机译:基于改进BP神经网络的农产品价格预测模型

获取原文

摘要

The price of agricultural products are affected by many factors, and the relationship between independent variables and dependent variables can not use specific mathematical formula to express. The traditional prediction methods emphasized on the linear relationship between the prices, and the limitation is apparent, which lead to the low prediction precision. This paper proposes an improved BP neural network model. Firstly, get factors of price fluctuation of agricultural products through the qualitative analysis and then use the MIV method to choose the strong influent factors as the input nodes of a neural network. Find the optimal structure of BP network through the improved learning algorithm, and then use the improved model to realize the agricultural high precision simulation of the product price. The results show that, the model provides an effective prediction tool for the agricultural product price forecasting.
机译:农产品价格受许多因素影响,自变量和因变量之间的关系不能用特定的数学公式来表达。传统的预测方法强调价格之间的线性关系,并且存在明显的局限性,导致预测精度较低。本文提出了一种改进的BP神经网络模型。首先通过定性分析得到农产品价格波动的因素,然后使用MIV方法选择影响较大的因素作为神经网络的输入节点。通过改进的学习算法找到BP网络的最优结构,然后使用改进的模型实现产品价格的农业高精度仿真。结果表明,该模型为农产品价格预测提供了有效的预测工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号