首页> 外文会议>IACR International Conference on Practice and Theory of Public-Key Cryptography >Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs
【24h】

Efficient Attribute-Based Signatures for Unbounded Arithmetic Branching Programs

机译:无边界算术分支程序的基于属性的有效签名

获取原文

摘要

This paper presents the first attribute-based signature (ABS) scheme in which the correspondence between signers and signatures is captured in an arithmetic model of computation. Specifically, we design a fully secure, i.e., adaptively unforgeable and perfectly signer-private ABS scheme for signing policies realizable by arithmetic branching programs (ABP), which are a quite expressive model of arithmetic computations. On a more positive note, the proposed scheme places no bound on the size and input length of the supported signing policy ABP's, and at the same time, supports the use of an input attribute for an arbitrary number of times inside a signing policy ABP, i.e., the so called unbounded multi-use of attributes. The size of our public parameters is constant with respect to the sizes of the signing attribute vectors and signing policies available in the system. The construction is built in (asymmetric) bilinear groups of prime order, and its unforgeability is derived in the standard model under (asymmetric version of) the well-studied decisional linear (DLIN) assumption coupled with the existence of standard collision resistant hash functions. Due to the use of the arithmetic model as opposed to the boolean one, our ABS scheme not only excels significantly over the existing state-of-the-art constructions in terms of concrete efficiency, but also achieves improved applicability in various practical scenarios. Our principal technical contributions are (a) extending and refining the techniques of Okamoto and Takashima [PKC 2011, PKC 2013], which were originally developed in the context of boolean span programs, to the arithmetic setting; and (b) innovating new ideas to allow unbounded multi-use of attributes inside ABP's, which themselves are of unbounded size and input length.
机译:本文提出了第一个基于属性的签名(ABS)方案,其中在计算的算术模型中捕获了签名者和签名之间的对应关系。具体来说,我们设计了一种完全安全的,即自适应不可伪造的,完美的签名者专用ABS方案,用于通过算术分支程序(ABP)实现的签名策略,这是算术计算的一种非常有表现力的模型。更为积极的一点是,建议的方案对支持的签名策略ABP的大小和输入长度没有限制,同时,支持在签名策略ABP中任意次数使用输入属性,即所谓的无限制的属性多重使用。关于系统中可用的签名属性向量和签名策略的大小,我们的公共参数的大小是恒定的。该构造是建立在素数阶的(不对称)双线性组中,并且其不可伪造性是在经过充分研究的决策线性(DLIN)假设(不对称版本)以及标准抗碰撞哈希函数的存在下的标准模型中得出的。由于使用的是算术模型而不是布尔模型,因此我们的ABS方案不仅在具体效率方面优于现有的最新结构,而且还提高了在各种实际情况下的适用性。我们的主要技术贡献是(a)将最初在布尔跨度程序的背景下开发的Okamoto和Takashima [PKC 2011,PKC 2013]的技术扩展和完善到算术设置; (b)创新思想,允许ABP内部无限制地多次使用属性,这些属性本身具有无限制的大小和输入长度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号