首页> 外文会议>Hybrid Systems: Computation and Control >Controller Synthesis with Budget Constraints
【24h】

Controller Synthesis with Budget Constraints

机译:具有预算约束的控制器综合

获取原文
获取原文并翻译 | 示例

摘要

We study the controller synthesis problem under budget constraints. In this problem, there is a cost associated with making an observation, and a controller can make only a limited number of observations in each round so that the total cost of the observations does not exceed a given fixed budget. The controller must ensure some ω-regular requirement subject to the budget constraint. Budget constraints arise in designing and implementing controllers for resource-constrained embedded systems, where a controller may not have enough power, time, or bandwidth to obtain data from all sensors in each round. They lead to games of imperfect information, where the unknown information is not fixed a priori, but can vary from round to round, based on the choices made by the controller how to allocate its budget. We show that the budget-constrained synthesis problem for ω-regular objectives is complete for exponential time. In addition to studying synthesis under a fixed budget constraint, we study the budget optimization problem, where given a plant, an objective, and observation costs, we have to find a controller that achieves the objective with minimal average accumulated cost (or minimal peak cost). We show that this problem is reducible to a game of imperfect information where the winning objective is a conjunction of an ω-regular condition and a long-run average condition (or a least max-cost condition), and this again leads to an exponential-time algorithm. Finally, we extend our results to games over infinite state spaces, and show that the budget-constrained synthesis problem is decidable for infinite state games with stable quotients of finite index. Consequently, the discrete time budget-constrained synthesis problem is decidable for rectangular hybrid automata.
机译:我们研究了预算约束下的控制器综合问题。在此问题中,进行观察会产生成本,并且控制器在每个回合中只能进行有限数量的观察,因此观察的总成本不会超过给定的固定预算。控制器必须确保某些ω-常规要求受预算约束。在为资源受限的嵌入式系统设计和实现控制器时,会出现预算限制,在这种情况下,控制器可能没有足够的功率,时间或带宽来获取每一轮中所有传感器的数据。它们导致信息不完全的博弈,其中未知信息不是先验地固定的,而是根据控制器如何分配预算做出的选择而在每个回合之间可能有所不同。我们表明,ω-常规目标的预算约束综合问题在指数时间内完成。除了研究在固定预算约束下的综合之外,我们还研究预算优化问题,在给定工厂,目标和观测成本的情况下,我们还必须找到一种能够以最小的平均累计成本(或最小的峰值成本)实现目标的控制器)。我们证明了这个问题对于信息不完善的博弈是可简化的,其中获胜目标是ω-正则条件和长期平均条件(或最小最大成本条件)的结合,这又导致指数增长时间算法。最后,我们将结果扩展到无限状态空间上的博弈,并表明预算约束的综合问题对于具有有限指数稳定商的无限状态博弈是可判定的。因此,对于矩形混合自动机,可以确定离散时间预算约束的综合问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号