首页> 外文会议>Hybrid Systems: Computation and Control >Algebraic Identification of MIMO SARX Models
【24h】

Algebraic Identification of MIMO SARX Models

机译:MIMO SARX模型的代数识别

获取原文
获取原文并翻译 | 示例

摘要

We consider the problem of identifying the parameters of a multiple-input multiple-output switched ARX model with unknown number of submodels of unknown and possibly different orders. This is a very challenging problem because of the strong coupling between the unknown discrete state and the unknown model parameters. We address this challenge by algebraically eliminating the discrete state from the switched system equations. This algebraic procedure leads to a set of hybrid decoupling polynomials on the input-output data, whose coefficients can be identified using linear techniques. The parameters of each subsystem can then be identified from the derivatives of these polynomials. This exact analytical solution, however, comes with an important price in complexity: The number of coefficients to be identified grows exponentially with the number of outputs and the number of submodels. We address this issue with an alternative scheme in which the input-output data is first projected onto a low-dimensional linear subspace. The projected data is then fit with a single hybrid decoupling polynomial, from which the classification of the data according to the generating submodels can be obtained. The parameters of each submodel are then identified from the input-output data associated with each submodel.
机译:我们考虑识别具有未知数目的子模型的未知数目和可能不同阶数的多输入多输出交换ARX模型的参数的问题。由于未知离散状态和未知模型参数之间的强耦合,这是一个非常具有挑战性的问题。我们通过代数消除切换系统方程中的离散状态来解决这一挑战。该代数过程导致输入-输出数据上的一组混合解耦多项式,其系数可使用线性技术确定。然后可以从这些多项式的导数中识别每个子系统的参数。但是,这种精确的分析解决方案在复杂性上付出了重要的代价:要识别的系数的数量与输出的数量和子模型的数量成指数增长。我们用一种替代方案解决了这个问题,在该方案中,首先将输入输出数据投影到低维线性子空间上。然后将投影数据与单个混合解耦多项式拟合,从中可以获取根据生成子模型的数据分类。然后从与每个子模型关联的输入-输出数据中识别每个子模型的参数。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号