首页> 外文会议>High performance embedded architectures and compiles >Buffer Sizing for Self-timed Stream Programs on Heterogeneous Distributed Memory Multiprocessors
【24h】

Buffer Sizing for Self-timed Stream Programs on Heterogeneous Distributed Memory Multiprocessors

机译:异构分布式内存多处理器上自定时流程序的缓冲区大小

获取原文
获取原文并翻译 | 示例

摘要

Stream programming is a promising way to expose concur rency to the compiler. A stream program is built from kernels that com municate only via point-to-point streams. The stream compiler statically allocates these kernels to processors, applying blocking, fission and fusion transformations. The compiler determines the sizes of the communication buffers, which affects performance since local memories can be small. In this paper, we propose a feedback-directed algorithm that deter mines the size of each communication buffer, based on i) the stream program that has been mapped onto processors, ii) feedback from an earlier execution, and iii) the memory constraints. The algorithm ex poses a trade-off between throughput and latency. It is general, in that it applies to stream programs with unstructured stream graphs, and it supports variable execution times and communication rates. We show results for the StreamIt benchmarks and random graphs. For the Streamlt benchmarks, throughput is optimal after the first iteration. For random graphs with stochastic computation times, throughput is within 3% of optimal after four iterations. Compared with the previ ous general algorithm, by Basten and Hoogerbrugge, our algorithm has significantly better performance and latency.
机译:流编程是向编译器公开并发性的一种有前途的方法。流程序是由仅通过点对点流进行通信的内核构建的。流编译器通过应用阻塞,裂变和融合转换将这些内核静态分配给处理器。编译器确定通信缓冲区的大小,这会影响性能,因为本地内存可能很小。在本文中,我们提出一种基于反馈的算法,该算法基于以下条件来确定每个通信缓冲区的大小:i)已映射到处理器的流程序,ii)来自较早执行的反馈,以及iii)内存约束。该算法ex在吞吐量和等待时间之间进行权衡。通常,它适用于具有非结构化流图的流程序,并且它支持可变的执行时间和通信速率。我们显示了StreamIt基准测试和随机图的结果。对于Streamlt基准,在第一次迭代后,吞吐量是最佳的。对于具有随机计算时间的随机图,经过四次迭代后,吞吐量在最佳值的3%之内。与先前的Basten和Hoogerbrugge通用算法相比,我们的算法具有更好的性能和延迟。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号