首页> 外文会议>High Performance Embedded Architectures and Compilers; Lecture Notes in Computer Science; 4367 >Branch History Matching: Branch Predictor Warmup for Sampled Simulation
【24h】

Branch History Matching: Branch Predictor Warmup for Sampled Simulation

机译:分支历史记录匹配:用于采样模拟的分支预测器预热

获取原文
获取原文并翻译 | 示例

摘要

Computer architects and designers rely heavily on simulation. The downside of simulation is that it is very time-consuming — simulating an industry-standard benchmark on today's fastest machines and simulators takes several weeks. A practical solution to the simulation problem is sampling. Sampled simulation selects a number of sampling units out of a complete program execution and only simulates those sampling units in detail. An important problem with sampling however is the microarchitecture state at the beginning of each sampling unit. Large hardware structures such as caches and branch predictors suffer most from unknown hardware state. Although a great body of work exists on cache state warmup, very little work has been done on branch predictor warmup. This paper proposes Branch History Matching (BHM) for accurate branch predictor warmup during sampled simulation. The idea is to build a distribution for each sampling unit of how far one needs to go in the pre-sampling unit in order to find the same static branch with a similar global and local history as the branch instance appearing in the sampling unit. Those distributions are then used to determine where to start the warmup phase for each sampling unit for a given total warmup length budget. Using SPEC CPU2000 integer benchmarks, we show that BHM is substantially more efficient than fixed-length warmup in terms of warmup length for the same accuracy. Or reverse, BHM is substantially more accurate than fixed-length warmup for the same warmup budget.
机译:计算机架构师和设计师在很大程度上依赖于仿真。模拟的不利之处在于它非常耗时-在当今最快的机器和模拟器上模拟行业标准的基准测试需要花费数周的时间。解决模拟问题的实际方法是采样。采样模拟从完整的程序执行中选择许多采样单位,并且仅详细模拟那些采样单位。但是,采样的一个重要问题是每个采样单元开始时的微体系结构状态。大型硬件结构(例如缓存和分支预测器)受未知硬件状态的影响最大。尽管在缓存状态预热方面存在大量工作,但在分支预测变量预热方面却进行的工作很少。本文提出了分支历史匹配(BHM),以在采样模拟过程中实现准确的分支预测变量预热。这个想法是为每个采样单元建立一个分布,该分布需要在预采样单元中走多远才能找到与在采样单元中出现的分支实例具有相似的全局和局部历史的相同静态分支。然后,将这些分布用于确定在给定的总预热长度预算下,每个采样单元从何处开始预热阶段。使用SPEC CPU2000整数基准,我们显示出在相同精度的预热长度方面,BHM比固定长度预热效率更高。或者相反,对于相同的预热预算,BHM比固定长度的预热准确得多。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号