首页> 外文会议>High Performance Embedded Architectures and Compilers; Lecture Notes in Computer Science; 4367 >Arx: A Toolset for the Efficient Simulation and Direct Synthesis of High-Performance Signal Processing Algorithms
【24h】

Arx: A Toolset for the Efficient Simulation and Direct Synthesis of High-Performance Signal Processing Algorithms

机译:Arx:高性能信号处理算法的有效仿真和直接综合的工具集

获取原文
获取原文并翻译 | 示例

摘要

This paper addresses the efficient implementation of highperformance signal-processing algorithms. In early stages of such designs many computation-intensive simulations may be necessary. This calls for hardware description formalisms targeted for efficient simulation (such as the programming language C). In current practice, other formalisms (such as VHDL) will often be used to map the design on hardware by means of logic synthesis. A manual, error-prone, translation of a description is then necessary. The line of thought of this paper is that the gap between simulation and synthesis should not be bridged by stretching the use of existing formalisms (e.g. defining a synthesizable subset of C), but by a language dedicated to an application domain. This resulted in Arx, which is meant for signal-processing hardware at the register-transfer level, either using floating-point or fixed-point data. Code generators with knowledge of the application domain then generate efficient simulation models and synthesizable VHDL. Several designers have already completed complex signal-processing designs using Arx in a short time, proving in practice that Arx is easy to learn. Benchmarks presented in this paper show that the generated simulation code is significantly faster than SystemC.
机译:本文介绍了高性能信号处理算法的有效实现。在此类设计的早期阶段,可能需要进行大量计算密集型仿真。这需要针对高效仿真的硬件描述形式(例如编程语言C)。在当前实践中,其他形式主义(例如VHDL)将经常用于通过逻辑综合将设计映射到硬件上。因此,需要手动进行的,易于出错的描述翻译。本文的思路是,不应通过扩展现有形式主义的使用(例如定义C的可合成子集)来弥合仿真与综合之间的鸿沟,而应通过专用于应用领域的语言来弥合。这产生了Arx,它用于寄存器传输级别的信号处理硬件,使用浮点或定点数据。然后,具有应用程序领域知识的代码生成器将生成有效的仿真模型和可综合的VHDL。几位设计师已经在短时间内使用Arx完成了复杂的信号处理设计,实践证明Arx易于学习。本文提出的基准表明,生成的仿真代码明显比SystemC快。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号