首页> 外文会议>High performance computing 1997: Grand challenges in computer simulation >A parallel preconditioned inner product-free algorithm for sparse least squares problems
【24h】

A parallel preconditioned inner product-free algorithm for sparse least squares problems

机译:稀疏最小二乘问题的并行预处理内部无积算法

获取原文
获取原文并翻译 | 示例

摘要

On modern architecture the performance of CGLS, a basic iterative method whose main idea is to organize the computation of conjugate gradient method applied to normal equations for solving sparse least squares problems is always limited because of the global communication required for inner products. Inner products often therefore present a bottleneck, and it is desirable to reduce or even eliminate all the inner products. Here we present an inner product-free conjugate gradient-like algorithm, that s imulates the standard conjugate gradient by approximating the conjugate gradient orthogonal plynomial by suitable chosen orthogonal polynomial from Bernstein-Szego class, with Chebsyshev polynomial preconditioner which is constructured based on the observation that good estimates for the eigenvalue distribution can be surprisingly derived after only a few steps of the conjugate gradient-type method. For the inner product-free algorithm, the parallel performance has been compared with the standard and modified approaches. For Chebyshev polynomial preconditioner, theoretically it is optimal for which the eigenvalue distribution is highly ill-conditioned. The experimental comparison results with other techniques are reported as well.
机译:在现代建筑中,CGLS的性能是一种基本的迭代方法,其主要思想是组织用于求解稀疏最小二乘问题的法向方程的共轭梯度法的计算,但由于内部乘积需要全局通信,因此始终受到限制。因此,内产品通常存在瓶颈,并且期望减少甚至消除所有内产品。在这里,我们提出了一种无内积的类共轭梯度算法,该算法通过使用根据观察结果构造的Chebsyshev多项式前置条件,通过选择适当的选自Bernstein-Szego类的正交多项式来近似共轭梯度正交多项式,从而模仿标准共轭梯度仅在共轭梯度型方法的几个步骤之后,就可以令人惊讶地得出特征值分布的良好估计。对于内部无积算法,已将并行性能与标准方法和改进方法进行了比较。对于Chebyshev多项式前置条件,从理论上讲,本征值分布是病态严重的最佳选择。还报告了与其他技术的实验比较结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号