首页> 外文会议>Geoscience and Remote Sensing Symposium, 2007 IEEE International >A wavelet based targets detection method for high resolution airborne SAR data
【24h】

A wavelet based targets detection method for high resolution airborne SAR data

机译:基于小波的高分辨率机载SAR数据目标检测方法

获取原文

摘要

A wavelet based automatic targets detection method for high resolution airborne SAR data is described in this article to receive faster and more accuracy detection. This method is based on the assumption that man-made objects are easily detectable at low resolution because their scattering is more persistent than that of natural objects. The algorithm involves an improved wavelet soft threshold filter (IWSTF) and a wavelet based RCCFAR detector. In order to retain the target feature, the wavelet soft threshold filter is improved by the strategy used in the enhanced Lee filter. Instead of using a global threshold, we adopted an adaptive threshold calculated according to the detail coefficients in each scale. To accelerate the RCCFAR detector, two RCCFAR detectors are used. One is first applied to the approximate coefficients to make a coarse detection. The other one is applied to the filtered images in those regions which are regarded as candidate targets. Performance of the algorithm is assessed by some high resolution airborne SAR image and it shows that the algorithm can effectively reduce false alarms caused by speckles.
机译:本文介绍了一种基于小波的高分辨率机载SAR数据自动目标检测方法,以实现更快,更准确的检测。此方法基于以下假设:人造物体的散射比自然物体更持久,因此很容易在低分辨率下进行检测。该算法包括改进的小波软阈值滤波器(IWSTF)和基于小波的RCCFAR检测器。为了保留目标特征,小波软阈值滤波器通过增强Lee滤波器中使用的策略进行了改进。代替使用全局阈值,我们采用了根据每个比例的详细系数计算的自适应阈值。为了加速RCCFAR检测器,使用了两个RCCFAR检测器。首先将一个应用于近似系数以进行粗略检测。另一个应用于那些被视为候选目标的区域中的滤波图像。通过一些高分辨率机载SAR图像对算法的性能进行了评估,结果表明该算法可以有效减少斑点引起的虚警。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号