首页> 外文会议>Geometrically unfitted finite element methods and applications >Deriving Robust Unfitted Finite Element Methods from Augmented Lagrangian Formulations
【24h】

Deriving Robust Unfitted Finite Element Methods from Augmented Lagrangian Formulations

机译:从增强拉格朗日公式推导出稳健的不拟合有限元方法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we will discuss different coupling methods suitable for use in the framework of the recently introduced CutFEM paradigm, cf. Burman et al. (Int. J. Numer. Methods Eng. 104(7):472-501,2015). In particular we will consider mortaring using Lagrange multipliers on the one hand and Nitsche's method on the other. For simplicity we will first discuss these methods in the setting of uncut meshes, and end with some comments on the extension to CutFEM. We will, for comparison, discuss some different types of problems such as high contrast problems and problems with stiff coupling or adhesive contact. We will review some of the existing methods for these problems and propose some alternative methods resulting from crossovers from the Lagrange multiplier framework to Nitsche's method and vice versa.
机译:在本文中,我们将讨论适用于最近引入的CutFEM范例框架的各种不同的耦合方法,请参见。 Burman等。 (Int.J.Numer.Methods Eng.104(7):472-501,2015)。特别是,我们将考虑一方面使用拉格朗日乘数进行打浆,另一方面使用Nitsche方法进行打浆。为简单起见,我们将首先在未切割网格的设置中讨论这些方法,最后以对CutFEM扩展的一些注释结束。为了进行比较,我们将讨论一些不同类型的问题,例如高对比度问题以及刚性耦合或粘合剂接触问题。我们将回顾一些针对这些问题的现有方法,并提出一些替代方法,这些替代方法是从Lagrange乘数框架与Nitsche方法的交叉产生的,反之亦然。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号