首页> 外文会议>Genetic and Evolutionary Computation Conference Pt.1 Jul 12-16, 2003 Chicago, IL, USA >A Generalized Feedforward Neural Network Architecture and Its Training Using Two Stochastic Search Methods
【24h】

A Generalized Feedforward Neural Network Architecture and Its Training Using Two Stochastic Search Methods

机译:广义前馈神经网络架构及其两种随机搜索方法的训练

获取原文
获取原文并翻译 | 示例

摘要

Shunting Inhibitory Artificial Neural Networks (SIANNs) are biologically inspired networks in which the synaptic interactions are mediated via a nonlinear mechanism called shunting inhibition, which allows neurons to operate as adaptive nonlinear filters. In this article, The architecture of SIANNs is extended to form a generalized feedforward neural network (GFNN) classifier. Two training algorithms are developed based on stochastic search methods, namely genetic algorithms (GAs) and a randomized search method. The combination of stochastic training with the GFNN is applied to four benchmark classification problems: the XOR problem, the 3-bit even parity problem, a diabetes dataset and a heart disease dataset. Experimental results prove the potential of the proposed combination of GFNN and stochastic search training methods. The GFNN can learn difficult classification tasks with few hidden neurons; it solves perfectly the 3-bit parity problem using only one neuron.
机译:分流抑制人工神经网络(SIANN)是受生物学启发的网络,其中的突触相互作用是通过称为分流抑制的非线性机制介导的,该机制使神经元能够充当自适应非线性滤波器。在本文中,SIANN的体系结构被扩展以形成广义前馈神经网络(GFNN)分类器。基于随机搜索方法,开发了两种训练算法,即遗传算法和随机搜索方法。随机训练与GFNN的结合应用于四个基准分类问题:XOR问题,3位偶数奇偶问题,糖尿病数据集和心脏病数据集。实验结果证明了GFNN和随机搜索训练方法相结合的潜力。 GFNN可以学习几乎没有隐藏神经元的困难分类任务;它仅使用一个神经元即可完美解决3位奇偶校验问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号