首页> 外文会议>Fuzzy Systems and Knowledge Discovery; Lecture Notes in Artificial Intelligence; 4223 >A Fuzzy Symbolic Inference System for Postal Address Component Extraction and Labelling
【24h】

A Fuzzy Symbolic Inference System for Postal Address Component Extraction and Labelling

机译:邮政地址成分提取与标记的模糊符号推理系统

获取原文
获取原文并翻译 | 示例

摘要

It is important to properly segregate the different components present in the destination postal address under different labels namely addressee name, house number, street number, extension/ area name, destination town name and the like for automatic address reading. This task is not as easy as it would appear particularly for unstructured postal addresses such as that are found in India. This paper presents a fuzzy symbolic inference system for postal mail address component extraction and labelling. The work uses a symbolic representation for postal addresses and a symbolic knowledge base for postal address component labelling. A symbolic similarity measure treated as a fuzzy membership function is devised and is used for finding the distance of the extracted component to a probable label. An alpha cut based de-fuzzification technique is employed for labelling and evaluation of confidence in the decision. The methodology is tested on 500 postal addresses and an efficiency of 94% is obtained for address component labeling.
机译:为了自动读取地址,正确隔离目的地邮政地址中存在的不同组件(在收件人姓名,门牌号,街道号码,分机/地区名称,目的地城镇名称等)下的不同标签很重要。这项任务并不像在印度这样的非结构化邮政地址中那样容易出现。本文提出了一种用于邮件地址成分提取和标记的模糊符号推理系统。该作品使用邮政地址的符号表示和邮政地址组件标签的符号知识库。设计了一种被视为模糊隶属度函数的符号相似性度量,并将其用于查找提取的分量到可能标签的距离。基于alpha剪切的反模糊技术用于标记和评估决策的信心。该方法在500个邮政地址上进行了测试,地址组件标记效率达到94%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号