首页> 外文会议>Fundamentals of computation theory >Modifying the Upper Bound on the Length of Minimal Synchronizing Word
【24h】

Modifying the Upper Bound on the Length of Minimal Synchronizing Word

机译:修改最小同步字长度的上限

获取原文
获取原文并翻译 | 示例

摘要

A word w is called synchronizing (recurrent, reset, magic, directable) word of deterministic finite automaton (DFA) if w sends all states of the automaton to a unique state. In 1964 Jan Cerny found a sequence of n-state complete DFA possessing a minimal synchronizing word of length (n - 1)~2. He conjectured that it is an upper bound on the length of such words for complete DFA. Nevertheless, the best upper bound (n~3 - n)/6 was found almost 30 years ago. We reduce the upper bound on the length of the minimal synchronizing word to n(7n~2 + 6n - 16)/48. An implemented algorithm for finding synchronizing word with restricted upper bound is described. The work presents the distribution of all synchronizing automata of small size according to the length of an almost minimal synchronizing word.
机译:如果w将自动机的所有状态发送到唯一状态,则将单词w称为确定性有限自动机(DFA)的同步(循环,重置,魔术,可定向)字。 1964年,Jan Cerny发现了一个具有最小同步字长(n-1)〜2的n状态完整DFA序列。他推测,对于完整的DFA,这是此类字词长度的上限。尽管如此,最好的上限(n〜3--n)/ 6是在30年前发现的。我们将最小同步字长度的上限减小为n(7n〜2 + 6n-16)/ 48。描述了一种用于找到具有受限上限的同步词的实现算法。这项工作根据几乎最小的同步字的长度介绍了所有小尺寸同步自动机的分布。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号