首页> 外文会议>Fundamentals of computation theory >Functions That Preserve p-Randomness
【24h】

Functions That Preserve p-Randomness

机译:保持p随机性的函数

获取原文
获取原文并翻译 | 示例

摘要

We show that polynomial-time randomness (p-randomness) is preserved under a variety of familiar operations, including addition and multiplication by a nonzero polynomial-time computable real number. These results follow from a general theorem: If I is contained in R is an open interval, f : I → R is a function, and r ∈ I is p-random, then f(r) is p-random provided 1. f is p-computable on the dyadic rational points in I, and 2. f varies sufficiently at r, i.e., there exists a real constant C > 0 such that either (any x∈I -{r})[(x-r)/(f(x)-f(r))≥C] or (any x ∈ I- {r})[(x-r)/(f(x)-f(r))≤-C]. Our theorem implies in particular that any analytic function about a p-computable point whose power series has uniformly p-computable coefficients preserves p-randomness in its open interval of absolute convergence. Such functions include all the familiar functions from first-year calculus.
机译:我们显示多项式时间随机性(p-randomness)在各种熟悉的操作下得以保留,包括与非零多项式时间可计算实数的加法和乘法。这些结果来自一个一般性定理:如果I包含在R中是一个开放区间,f:I→R是一个函数,并且r∈I是p随机的,则f(r)是p随机的(假设1)。f在I的二元有理点上是p可计算的。2. f在r处充分变化,即,存在一个实常数C> 0,使得(x∈I-{r})[(xr)/( f(x)-f(r))≥C]或(任何x∈I- {r})[(xr)/(f(x)-f(r))≤-C]。我们的定理特别暗示,关于幂级数具有一致p可计算系数的p可计算点的任何解析函数都可以在其绝对收敛的开放区间内保留p随机性。这些功能包括一年级微积分中所有熟悉的功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号