首页> 外文会议>Frontiers in biological detection: from nanosensors to systems V >Charge Injection through Nanocomposite Electrode in Microfluidic Channel for Electrical Lysis of Biological Cells
【24h】

Charge Injection through Nanocomposite Electrode in Microfluidic Channel for Electrical Lysis of Biological Cells

机译:在微流控通道中通过纳米复合电极注入电荷以实现生物细胞的电裂解

获取原文
获取原文并翻译 | 示例

摘要

Several concepts have been developed in the recent years for nanomaterial based integrated MEMS platform in order to accelerate the process of biological sample preparation followed by selective screening and identification of target molecules. In this context, there exist several challenges which need to be addressed in the process of electrical lysis of biological cells. These are due to (ⅰ) low resource settings while achieving maximal lysis (ⅱ) high throughput of target molecules to be detected (ⅲ) automated extraction and purification of relevant molecules such as DNA and protein from extremely small volume of sample (ⅳ) requirement of fast, accurate and yet scalable methods (ⅴ) multifunctionality toward process monitoring and (ⅵ) downward compatibility with already existing diagnostic protocols. This paper reports on the optimization of electrical lysis process based on various different nanocomposite coated electrodes placed in a microfluidic channel. The nanocomposites are synthesized using different nanomaterials like Zinc nanorod dispersion in polymer. The efficiency of electrical lysis with various different electrode coatings has been experimentally verified in terms of DNA concentration, amplification and protein yield. The influence of the coating thickness on the injection current densities has been analyzed. We further correlate experimentally the current density vs. voltage relationship with the extent of bacterial cell lysis. A coupled multiphysics based simulation model is used to predict the cell trajectories and lysis efficiencies under various electrode boundary conditions as estimated from experimental results. Detailed in-situ fluorescence imaging and spectroscopy studies are performed to validate various hypotheses.
机译:近年来,已经为基于纳米材料的集成MEMS平台开发了一些概念,以加速生物样品的制备过程,然后进行目标分子的选择性筛选和鉴定。在这种情况下,在生物细胞的电裂解过程中需要解决几个挑战。这是由于(ⅰ)资源设置低,同时实现了最大的裂解(ⅱ)待检测目标分子的高通量(ⅲ)从极少量的样品中自动提取和纯化了相关分子,例如DNA和蛋白质(ⅳ)快速,准确且可扩展的方法(ⅴ)多功能的过程监控和(ⅵ)与现有诊断协议的向下兼容性。本文报告了基于放置在微流体通道中的各种不同的纳米复合涂层电极的电裂解过程的优化。使用不同的纳米材料(如锌纳米棒在聚合物中的分散体)合成纳米复合材料。在DNA浓度,扩增和蛋白质产量方面,已通过实验验证了使用各种不同的电极涂层进行电解的效率。分析了涂层厚度对注入电流密度的影响。我们进一步通过实验将电流密度与电压的关系与细菌细胞裂解的程度相关联。基于多物理场耦合的仿真模型可用于预测各种电极边界条件下的细胞轨迹和裂解效率,这是根据实验结果估算得出的。进行了详细的原位荧光成像和光谱学研究,以验证各种假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号