首页> 外文会议>Foundations of software science and computational structures >On Global Model Checking Trees Generated by Higher-Order Recursion Schemes
【24h】

On Global Model Checking Trees Generated by Higher-Order Recursion Schemes

机译:高阶递归方案生成的全局模型检查树

获取原文
获取原文并翻译 | 示例

摘要

Higher-order recursion schemes are systems of rewrite rules on typed non-terminal symbols, which can be used to define infinite trees. The Global Modal Mu-Calculus Model Checking Problem takes as input such a recursion scheme together with a modal μ-calculus sentence and asks for a finite representation of the set of nodes in the tree generated by the scheme at which the sentence holds. Using a method that appeals to game semantics, we show that for an order-n recursion scheme, one can effectively construct a non-deterministic order-n collapsible pushdown automaton representing this set. The level of the automaton is strict in the sense that in general no non-deterministic order-(n - 1) automaton could do likewise (assuming the requisite hierarchy theorem). The question of determinisation is left open. As a corollary we can also construct an order-n collapsible pushdown automaton representing the constructible winning region of an order-n collapsible pushdown parity game.
机译:高阶递归方案是在类型化的非终结符上重写规则的系统,可用于定义无限树。全局模态Mu-微积分模型检查问题将这种递归方案与模态μ-微积分语句一起作为输入,并要求该语句所处的方案所生成的树中节点集的有限表示。使用一种吸引游戏语义的方法,我们表明,对于n阶递归方案,可以有效地构建表示此集合的不确定n阶可折叠下推自动机。在一般意义上,自动机的级别是严格的,即通常没有确定性顺序的(n-1)自动机也可以做同样的事情(假设必要的层次定理)。确定性的问题尚待解决。作为推论,我们还可以构造一个n阶可折叠下推式自动机,以表示n阶可折叠下推式奇偶游戏的可构造获胜区域。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号