首页> 外文会议>Foundations of software science and computational structures >Tighter Bounds for the Determinisation of Biichi Automata
【24h】

Tighter Bounds for the Determinisation of Biichi Automata

机译:确定Biichi Automata的约束更严格

获取原文
获取原文并翻译 | 示例

摘要

The introduction of an efficient determinisation technique for Biichi automata by Safra has been a milestone in automata theory. To name only a few applications, efficient determinisation techniques for ω-word automata are the basis for several manipulations of ω-tree automata (most prominently the nondeterminisation of alternating tree automata) as well as for satisfiability checking and model synthesis for branching- and alternating-time logics. This paper proposes a determinisation technique that is simpler than the constructions of Safra, Piterman, and Muller and Schupp, because it separates the principle acceptance mechanism from the concrete acceptance condition. The principle mechanism intuitively uses a Rabin condition on the transitions; we show how to obtain an equivalent Rabin transition automaton with approximately (1.65 n)~n states from a nondeterministic Biichi automaton with n states. Having established this mechanism, it is simple to develop translations to automata with standard acceptance conditions. We can construct standard Rabin automata whose state-space is bilinear in the size of the input alphabet and the state-space of the Rabin transition automaton, or, for large input alphabets, contains approximately (2.66 n)~n states, respectively. We also provide a flexible translation to parity automata with O(n!~2) states and 2n priorities based on a later introduction record, and hence connect the transformation of the acceptance condition to other record based transformations known from the literature.
机译:Safra为Biichi自动机引入有效的确定化技术一直是自动机理论中的一个里程碑。仅举几个例子,高效的ω-word自动机确定技术是ω-tree自动机几种操作(最重要的是交替树自动机的非确定性)以及分支和交替的可满足性检查和模型综合的基础。时间逻辑。本文提出了一种确定化技术,该技术比Safra,Piterman,Muller和Schupp的构造更简单,因为它将原理接受机制与具体接受条件分开了。原理机制在过渡上直观地使用拉宾条件;我们展示了如何从具有n个状态的不确定Biichi自动机中获得近似(1.65 n)〜n个状态的等效Rabin转变自动机。建立这种机制后,很容易在标准接受条件下将翻译开发为自动机。我们可以构造标准的拉宾自动机,其状态空间在输入字母的大小上是双线性的,并且在拉宾转换自动机的状态空间中,或者对于大的输入字母,分别包含大约(2.66 n)〜n个状态。我们还基于后来的引入记录,提供了对具有O(n!〜2)状态和2n优先级的奇偶自动机的灵活转换,因此将接受条件的转换与文献中已知的其他基于记录的转换联系起来。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号