首页> 外文会议>Symposium on fluid power and motion control 2018 >A NEURAL NETWORK STRATEGY FOR LEARNING OF NONLINEARITIES TOWARD FEED-FORWARD CONTROL OF PRESSURE-COMPENSATED HYDRAULIC VALVES WITH A SIGNIFICANT DEAD ZONE
【24h】

A NEURAL NETWORK STRATEGY FOR LEARNING OF NONLINEARITIES TOWARD FEED-FORWARD CONTROL OF PRESSURE-COMPENSATED HYDRAULIC VALVES WITH A SIGNIFICANT DEAD ZONE

机译:用于学习带有严重死区的压力补偿液压阀的非线性神经网络的前馈控制的神经网络策略

获取原文
获取原文并翻译 | 示例

摘要

A velocity feed-forward-based strategy is an effective means for controlling a heavy-duty hydraulic manipulator; in particular, a typical valve-controlled hydraulic manipulator, to compensate for valve dead-zone and other hydraulic valve nonlineari-ties. Based on our previous work on the adaptive learning of valve velocity feed-forwards, manually labelling and identifying the dead-zones and the other nonlinearities in the velocity feedforward curves of pressure-compensated hydraulic valves can be avoided. Nevertheless, it may take two to three minutes or more per actuator to identify a pressure-compensated valve's highly nonlinear velocity feed-forward in real-time with an adaptive approach, which should be reduced for realistic applications. In this paper, inspired by brain signal analysis technologies, we propose a new method based on deep convolutional neural networks comparing with the previous method to significantly reduce this online learning process with the strong nonlinearities of pressure-compensated hydraulic valves. We present simulation results to demonstrate the effectiveness of the deep learning-based learning method compared to the previous results with an adaptive control-based learning.
机译:基于速度前馈的策略是控制重型液压机械手的有效手段。特别是典型的阀控液压操纵器,以补偿阀死区和其他液压阀非线性。基于我们先前对阀速度前馈的自适应学习的工作,可以避免手动标记和识别压力补偿液压阀的速度前馈曲线中的死区和其他非线性。但是,每个执行器可能需要两到三分钟或更长时间才能通过自适应方法实时识别压力补偿阀的高度非线性速度前馈,在实际应用中应减少该时间。在本文中,受脑信号分析技术的启发,我们提出了一种基于深度卷积神经网络的新方法,该方法与以前的方法进行了比较,目的是通过压力补偿液压阀的强非线性来大大减少这种在线学习过程。我们目前的仿真结果证明了基于深度学习的学习方法与基于自适应控制的学习的先前结果相比的有效性。

著录项

  • 来源
    《Symposium on fluid power and motion control 2018》|2018年|V001T01A023.1-V001T01A023.9|共9页
  • 会议地点 Bath(GB)
  • 作者单位

    Lab. of Automation and Hydraulics Tampere University of Technology Tampere, Finland;

    Lab. of Automation and Hydraulics Tampere University of Technology Tampere, Finland;

    Lab. of Automation and Hydraulics Tampere University of Technology Tampere, Finland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号