首页> 外文会议>Fifth workshop on syntax, semantics and structure in statistical translation 2011. >Improving Reordering for Statistical Machine Translation with Smoothed Priors and Syntactic Features
【24h】

Improving Reordering for Statistical Machine Translation with Smoothed Priors and Syntactic Features

机译:通过平滑的先验和句法功能改善统计机器翻译的重新排序

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose several novel approaches to improve phrase reordering for statistical machine translation in the framework of maximum-entropy-based modeling. A smoothed prior probability is introduced to take into account the distortion effect in the priors. In addition to that we propose multiple novel distortion features based on syntactic parsing. A new metric is also introduced to measure the effect of distortion in the translation hypotheses. We show that both smoothed priors and syntax-based features help to significantly improve the reordering and hence the translation performance on a large-scale Chinese-to-English machine translation task.
机译:在本文中,我们提出了几种新颖的方法来改进基于最大熵的建模框架中统计机器翻译的短语重排。引入平滑的先验概率以考虑先验中的失真效应。除此之外,我们提出了基于句法分析的多种新颖的失真特征。还引入了一种新的度量标准,以衡量翻译假设中的失真效应。我们证明,平滑的先验和基于语法的功能都有助于显着改善重排序,从而改善大型汉英机器翻译任务的翻译性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号