首页> 外文会议>Fifth Workshop on Algorithm Engineering and Experiments Jan 11, 2003 Baltimore, MD. >Train Routing Algorithms: Concepts, Design Choices, and Practical Considerations
【24h】

Train Routing Algorithms: Concepts, Design Choices, and Practical Considerations

机译:火车路线算法:概念,设计选择和实际考虑

获取原文
获取原文并翻译 | 示例

摘要

Routing cars of trains for a given schedule is a problem that has been studied for a long time. The minimum number of cars to run a schedule can be found efficiently by means of flow algorithms. Realistic objectives are more complex, with many cost components such as shunting or coupling/decoupling of trains, and also with a variety of constraints such as requirements for regular maintenance. These versions of the problem tend to be NP-hard, and thus the standard powerful tools (e.g. branch-and-bound, branch-and-cut, La-grangian relaxation, gradient descent) have been used. These methods may guarantee good solutions, but not quick runtimes. In practice, two major railway companies, German Railway and Swiss Federal Railway, do not use either approach. Instead, their schedulers create solutions manually, modifying solutions from the previous year. In this paper, we advocate an intermediate, semiautomatic approach. In reality, not all constraints or objectives can be easily formulated mathematically. To allow for interactive human modification of solutions, the system must work rapidly, allowing a user to save desired subsolutions, and modify (or just start over on) the rest. After careful examination to find which constraints and costs we can easily integrate into a flow model approach, we heuristically modify network flow based solutions to account for remaining constraints. We present experimental results from this approach on real data from the German Railway and Swiss Federal Railway.
机译:给定时间表安排火车车厢是一个已经研究了很长时间的问题。可以通过流算法有效地找到运行时间表的最小汽车数量。现实的目标更加复杂,具有许多成本要素,例如列车的调车或耦合/去耦,并且还具有多种约束条件,例如对定期维护的要求。这些版本的问题往往难以解决NP问题,因此已使用了标准的功能强大的工具(例如,分支定界,分支定界,拉格朗日松弛,梯度下降)。这些方法可以保证良好的解决方案,但不能保证快速的运行时间。实际上,两家主要的铁路公司,德国铁路公司和瑞士联邦铁路公司,都不使用这两种方法。相反,他们的调度程序手动创建解决方案,从上一年开始修改解决方案。在本文中,我们提倡一种中间的半自动方法。实际上,并非所有约束条件或目标都可以通过数学轻松地表述。为了允许交互式人工修改解决方案,系统必须快速运行,允许用户保存所需的子解决方案,然后修改(或只是重新开始)其余解决方案。在仔细检查以发现哪些约束和成本后,我们可以轻松地将其集成到流量模型方法中,然后我们试探性地修改基于网络流量的解决方案,以解决剩余的约束。我们用这种方法对德国铁路和瑞士联邦铁路的真实数据给出了实验结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号