【24h】

Building Knowledge Graphs from Survey Data: A Use Case in the Social Sciences (Extended Version)

机译:根据调查数据构建知识图谱:社会科学中的一个用例(扩展版)

获取原文

摘要

Many research endeavors in the social sciences rely on high-quality empirical data. Survey data is often used as a foundation to investigate social behavior. The GESIS Panel is a probability-based mixed-mode panel survey in Germany providing high-quality survey and statistical data about e.g. political opinions, well-being, and other contemporary societal topics. In general, the integration and analysis of relevant data is a time-consuming process for researchers. This is due to the fact that search, discovery, and retrieval of the survey data requires accessing various data sources providing different information in different file formats. In this paper, we present our architecture for building a Knowledge Graph of the GESIS Panel data. We present the relevant heterogeneous data sources and demonstrate how we semantically lift and interlink the data in a shared RDF model. At the core of our architecture is a Knowledge Graph representing all aspects of the surveys. It is generated in a modular fashion and, therefore, our solution can be transferred to the existing infrastructure of other survey data publishers.
机译:社会科学领域的许多研究工作都依赖于高质量的经验数据。调查数据通常被用作调查社会行为的基础。 GESIS专家组是德国基于概率的混合模式专家组调查,可提供有关以下方面的高质量调查和统计数据:政治见解,福祉和其他当代社会话题。通常,对研究人员而言,相关数据的集成和分析是一个耗时的过程。这是由于以下事实:调查数据的搜索,发现和检索需要访问以不同文件格式提供不同信息的各种数据源。在本文中,我们介绍了用于构建GESIS Panel数据的知识图的体系结构。我们介绍了相关的异构数据源,并演示了如何在共享的RDF模型中语义上提升和互连数据。我们架构的核心是代表调查各个方面的知识图。它以模块化的方式生成,因此,我们的解决方案可以转移到其他调查数据发布者的现有基础结构中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号