首页> 外文会议>Evolutionary computation, machine learning and data mining in bioinformatics >Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks
【24h】

Conquering the Needle-in-a-Haystack: How Correlated Input Variables Beneficially Alter the Fitness Landscape for Neural Networks

机译:征服干草堆中的针:相关的输入变量如何有益地改变神经网络的适应度

获取原文
获取原文并翻译 | 示例

摘要

Evolutionary algorithms such as genetic programming and grammatical evolution have been used for simultaneously optimizing network architecture, variable selection, and weights for artificial neural networks. Using an evolutionary algorithm to perform variable selection while searching for non-linear interactions is akin to searching for a needle in a haystack. There is, however, a considerable amount of correlation among variables in biological datasets, such as in microarray or genetic studies. Using the XOR problem, we show that correlation between non-functional and functional variables alters the variable selection fitness landscape by broadening the fitness peak over a wider range of potential input variables. Furthermore, when sub-optimal weights are used, local optima in the variable selection fitness landscape appear centered on each of the two functional variables. These attributes of the fitness landscape may supply building blocks for evolutionary search procedures, and may provide a rationale for conducting a local search for variable selection.
机译:诸如遗传编程和语法进化之类的进化算法已用于同时优化网络结构,变量选择和人工神经网络的权重。在搜索非线性交互时使用进化算法执行变量选择类似于在大海捞针中搜索针。但是,生物学数据集(例如微阵列或遗传研究)中的变量之间存在相当大的相关性。使用XOR问题,我们表明,非功能性变量和功能性变量之间的相关性通过在更宽范围的潜在输入变量范围内扩展适应性峰来改变变量选择适应性格局。此外,当使用次优权重时,变量选择适应度景观中的局部最优集中出现在两个功能变量的每一个上。适应性景观的这些属性可以为进化搜索过程提供基础,并且可以为进行变量选择的本地搜索提供依据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号