首页> 外文会议>IEEE Congress on Evolutionary Computation;CEC '09 >A hybrid multiple populations evolutionary algorithm for two-stage stochastic mixed-integer disjunctive programs
【24h】

A hybrid multiple populations evolutionary algorithm for two-stage stochastic mixed-integer disjunctive programs

机译:两阶段随机混合整数析取程序的混合多种群进化算法

获取原文

摘要

This article describes a hybrid multiple populations based evolutionary approach for disjunctive mathematical programs with uncertainties in the problem data. The problems are formulated as two-stage linear disjunctive programming problems which are solved by a stage decomposition based hybrid algorithm using multiple evolutionary algorithms to handle the disjunctive sets of the here-and-now (first stage) decisions and mathematical programming to handle the recourse (second stage) decisions. By an appropriate representation of the first-stage disjunctive solution space, the overall problem is decomposed into smaller subproblems without disjunctions. The resulting decomposed first-stage subproblems are solved independently by evolutionary algorithms, leading to parallel evolutions based on multiple populations. During the progress of the optimization, the number of subproblems is systematically reduced by comparing the current best global solution (upper bound) to lower bounds for the subproblems. This approach guaranties that the global optimal solution remains in the union of solution spaces of the remaining subproblems. A comparison of a classical evolutionary algorithm and the new multiple populations evolutionary algorithm for a real world batch scheduling problem shows that the new approach leads to a significantly improved coverage of the set of feasible solutions such that high quality feasible solutions can be generated faster.
机译:本文介绍了一种基于混合多种群的演化方法,用于在问题数据中具有不确定性的析取数学程序。这些问题被表述为两阶段线性析取规划问题,该问题通过基于阶段分解的混合算法解决,该算法使用多种进化算法处理当前(第一阶段)决策的析取集,并通过数学编程来处理资源(第二阶段)决策。通过适当地表示第一阶段的析取解空间,整个问题被分解为较小的子问题而没有析取。由此产生的分解的第一阶段子问题可以通过进化算法独立解决,从而导致基于多个总体的并行进化。在优化过程中,通过将当前最佳全局解决方案(上限)与子问题的下限进行比较,系统地减少了子问题的数量。这种方法可确保全局最优解保留在其余子问题的解空间的并集中。将经典进化算法和新的多种群进化算法用于现实世界中的批处理调度问题的比较表明,该新方法大大改善了可行解集的覆盖范围,从而可以更快地生成高质量的可行解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号