【24h】

Real-Time Power Performance Prediction in Tour de France

机译:环法自行车赛的实时功率性能预测

获取原文

摘要

This paper introduces the real-time machine learning system to predict power performance of professional riders at Tour de France. In cycling races, it is crucial not only for athletes to understand their power output but for cycling fans to enjoy the power usage strategy too. However, it is difficult to obtain the power information from each rider due to its competitive sensitivity. This paper discusses a machine learning module that predicts power using the GPS data with the focus on feature design and latency issue. First, the proposed feature design method leverages both hand-crafted feature engineering using physics knowledge and automatic feature generation using autoencoder. Second, the various machine learning models are compared and analyzed with the latency constraints. As a result, our proposed method reduced prediction error by 56.79% compared to the conventional physics model and satisfied the latency requirement. Our module was used during the Tour de France 2017 to indicate an effort index that was shared with fans via media.
机译:本文介绍了实时机器学习系统,以预测环法自行车赛专业选手的动力表现。在自行车比赛中,不仅要了解运动员的动力输出,而且也要让自行车迷享受动力使用策略,这一点至关重要。然而,由于其竞争敏感性,难以从每个骑手获得功率信息。本文讨论了一种机器学习模块,该模块使用GPS数据预测功率,重点关注功能设计和延迟问题。首先,提出的特征设计方法既利用了利用物理知识的手工特征工程,又利用了使用自动编码器的自动特征生成。其次,将各种机器学习模型与等待时间约束进行比较和分析。结果,与传统的物理模型相比,我们提出的方法将预测误差降低了56.79%,并且满足了延迟要求。在2017年环法自行车赛中使用了我们的模块,以指示通过媒体与粉丝分享的努力指标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号