首页> 外文会议>Engineering applications of neural networks >Incremental - Adaptive - Knowledge Based - Learning for Informative Rules Extraction in Classification Analysis of aGvHD
【24h】

Incremental - Adaptive - Knowledge Based - Learning for Informative Rules Extraction in Classification Analysis of aGvHD

机译:基于增量自适应知识的aGvHD分类分析中信息规则提取的学习。

获取原文
获取原文并翻译 | 示例

摘要

Acute graft-versus-host disease (aGvHD) is a serious systemic complication of allogeneic hematopoietic stem cell transplantation (HSCT) that occurs when alloreactive donor-derived T cells recognize host-recipient antigens as foreign. The early events leading to GvHD seem to occur very soon, presumably within hours from the graft infusion. Therefore, when the first signs of aGvHD clinically manifest, the disease has been ongoing for several days at the cellular level, and the inflammatory cytokine cascade is fully activated. So, it comes as no surprise that to identify biomarker signatures for approaching this very complex task is a critical issue. In the past, we have already approached it through joint molecular and computational analyses of gene expression data proposing a computational framework for this disease. Notwithstanding this, there aren't in literature quantitative measurements able to identify patterns or rules from these biomarkers or from aGvHD data, thus this is the first work about the issue. In this paper first we have applied different feature selection techniques, combined with different classifiers to detect the aGvHD at onset of clinical signs, then we have focused on the aGvHD scenario and in the knowledge discovery issue of the classification techniques used in the computational framework.
机译:急性移植物抗宿主病(aGvHD)是同种异体造血干细胞移植(HSCT)的严重系统性并发症,当同种反应性供体来源的T细胞将宿主受体抗原识别为异源时,就会发生这种情况。导致GvHD的早期事件似乎很快发生,大概是在移植物输注后的数小时内。因此,当临床上出现aGvHD的最初迹象时,该疾病在细胞水平上已经持续了几天,并且炎症性细胞因子级联反应已完全激活。因此,毫不奇怪,识别用于完成这一非常复杂任务的生物标志物签名是一个关键问题。过去,我们已经通过对基因表达数据进行联合分子和计算分析来提出这种疾病的计算框架,从而达到了这一目的。尽管如此,文献中还没有定量测量能够从这些生物标记物或aGvHD数据中识别模式或规则,因此这是有关该问题的第一篇著作。在本文中,我们首先应用了不同的特征选择技术,并结合了不同的分类器来检测临床体征发作时的aGvHD,然后我们重点研究了aGvHD场景和计算框架中使用的分类技术的知识发现问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号