首页> 外文会议>Electronic Components and Technology Conference, 2009. ECTC 2009 >Failure Mechanism of stacked CSP module under board-level drop impact
【24h】

Failure Mechanism of stacked CSP module under board-level drop impact

机译:板级跌落冲击下堆叠式CSP模块的失效机理

获取原文

摘要

Riding chip scale packages (CSPs) in the z-direction enables high-density 3D electronic packaging in which the shorter, through-interposer interconnections can provide faster signal transmission and integrity. Successful applications of such 3D stacking packages require a better understanding of their mechanical responses to and reliability under various loading conditions. In this paper, we present analysis results for failure mechanisms of 3D packaging by (1) simulating detailed mechanical response of the critical joints to a board-level drop impact and identifying the possible failure modes and mechanisms of 95.5Sn4AgCu (SAC) solder joints in 3D stacked-CSP modules under drop impact, and (2) building a theoretical framework that estimates impact-induced stresses in the critical solders. The results suggest the following: (1) Stresses predicted by the theoretical models are on the same order of magnitude as numerical results. (2) Both the theoretical and numerical results show that stresses fluctuate at a higher frequency and are about one order of magnitude smaller in the 90deg orientation drop than in the 0deg drop. The latter implies that all the stack-like 3D packaging reacts dynamically "stifferrdquo in the 90deg drop scheme. This explains why the 0deg drop scheme is the most critical test; if a specimen can survive from the 0deg drop test, it should survive a drop test in any other orientation. (3) The FE results display uneven deformation among the solders of the stack CSP module, in particular in the 0deg orientation drop. We deduce that the unequal deformation among the solders, due to differential flexure between the board and the packages, is the main cause for such high stresses in the critical solders in the 0deg drop. Solders carry impact load more equally and react stiffer in the 90deg orientation drop, resulting in much smaller stresses.
机译:在z方向上骑芯片级封装(CSP)可实现高密度3D电子封装,其中较短的中介层互连可提供更快的信号传输和完整性。这种3D堆叠包装的成功应用需要更好地了解其在各种负载条件下的机械响应和可靠性。在本文中,我们通过(1)模拟关键接头对板级跌落冲击的详细机械响应并确定95.5Sn4AgCu(SAC)焊接接头可能的失效模式和机理,来提供3D封装失效机理的分析结果。 3D堆叠式CSP模块在跌落冲击下,并且(2)建立了一个理论框架来估算关键焊料中冲击引起的应力。结果表明:(1)理论模型预测的应力与数值结果处于同一数量级。 (2)理论和数值结果均表明,应力在较高频率下波动,并且在90deg取向下的应力比在0deg取向下小约一个数量级。后者意味着所有类似堆栈的3D包装都会在90deg跌落方案中产生动态反应。这解释了为什么0deg跌落方案是最关键的测试;如果标本可以从0deg跌落测试中幸存下来,那么它应该在跌落中幸存下来(3)有限元测试结果表明,堆叠CSP模块的焊料之间的变形不均匀,尤其是在0deg取向下降时;我们推断,由于板与板之间的挠曲不同,导致焊料之间的变形不相等。封装是在0度跌落中的关键焊料中产生如此高应力的主要原因,焊锡承受的冲击载荷更加均等,并且在90度取向跌落时会产生更大的反应,从而减小了应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号