首页> 外文会议>Electronic Components and Technology Conference, 2009. ECTC 2009 >Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells
【24h】

Experimental investigation of heat transfer performance of a manifold microchannel heat sink for cooling of concentrated solar cells

机译:歧管微通道散热器冷却集中太阳能电池传热性能的实验研究

获取原文

摘要

The ever increasing need for more efficient utilization of solar energy at higher concentration levels in today's power technology; create a need for effective cooling methods to improve the dissipation heat flux level from concentrated solar cells. The present research is targeted at cooling small area, high concentration solar cells which are desired because of their higher electrical efficiency at higher concentration of solar flux. A novel manifold microchannel heat sink with high heat transfer coefficient was fabricated and tested. Manifold and microchannel are etched in two separate silicon substrates and eutectically bonded together to form a sealed heat sink. Compared to conventional microchannels, manifold microchannel provides less pressure drop due to short microchannels length, while allowing the redevelopment of thermal boundary layer in each channel to obtain high heat transfer coefficients. The microchannels can be directly microfabricated and integrated on the backside of the silicon solar cell and with a manifold fabricated in another silicon substrate; it can form a sealed heat sink. This type of designs not only minimizes the pressure drop, but also maximizes the heat transfer with eliminating the thermal interface resistance between the heated area and the heat sink. The experimental results suggest that the present heat sink can provide high heat transfer coefficients with only moderate pressure drops. Experimental results showed that a heat transfer coefficient of 65480 W/m2K can be achieved at a flow rate of 1.1 gr/s and heat flux of 75 W/cm2 using water as the working fluid. Since for all cases the flow is in thermal entry region, Nusselt number is not constant and it is shown that Nusselt number is correlated with Reynolds number to the power of 0.62.
机译:在当今的电力技术中,越来越需要以更高的浓度水平更有效地利用太阳能;因此,需要有效的冷却方法来改善集中太阳能电池的散热热通量。本研究针对于冷却小面积,高浓度的太阳能电池,这是期望的,因为它们在较高的太阳能通量下具有较高的电效率。制造并测试了一种新型的具有高传热系数的歧管微通道散热器。歧管和微通道在两个单独的硅基板上蚀刻,并通过共晶键合在一起形成密封的散热器。与常规微通道相比,歧管微通道由于微通道长度短而提供了较小的压降,同时允许每个通道中的热边界层重新显影以获得较高的热传递系数。可以将微通道直接微制造并集成在硅太阳能电池的背面,并在另一个硅基板上制造歧管。它可以形成一个密封的散热器。这种类型的设计不仅使压降最小,而且在消除被加热区域和散热器之间的热界面阻力的同时,使热传递最大化。实验结果表明,目前的散热器可以提供高的传热系数,而压降适中。实验结果表明,流量为1.1 gr / s,热通量为75 W / cm 2 时,传热系数为65480 W / m 2 K使用水作为工作流体。因为对于所有情况,流动都在热进入区域中,所以努塞尔数不是恒定的,并且表明努塞尔数与雷诺数相关,幂次为0.62。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号