首页> 外文会议>Earth resources and environmental remote sensing/GIS applications III >Integrating machine learning techniques and high-resolution imagery to generate GIS-ready information for urban water consumption studies
【24h】

Integrating machine learning techniques and high-resolution imagery to generate GIS-ready information for urban water consumption studies

机译:集成机器学习技术和高分辨率图像以生成可用于城市用水研究的GIS就绪信息

获取原文
获取原文并翻译 | 示例

摘要

Urban sprawl driven by shifts in tourism development produces new suburban landscapes of water consumption on Mediterranean coasts. Golf courses, ornamental, 'Atlantic' gardens and swimming pools are the most striking artefacts of this transformation, threatening the local water supply systems and exacerbating water scarcity. In the face of climate change, urban landscape irrigation is becoming increasingly important from a resource management point of view. This paper adopts urban remote sensing towards a targeted mapping approach using machine learning techniques and high-resolution satellite imagery (WorldView-2) to generate GIS-ready information for urban water consumption studies. Swimming pools, vegetation and - as a subgroup of vegetation - turf grass are extracted as important determinants of water consumption. For image analysis, the complex nature of urban environments suggests spatial-spectral classification, i.e. the complementary use of the spectral signature and spatial descriptors. Multiscale image segmentation provides means to extract the spatial descriptors - namely object feature layers - which can be concatenated at pixel level to the spectral signature. This study assesses the value of object features using different machine learning techniques and amounts of labeled information for learning. The results indicate the benefit of the spatial-spectral approach if combined with appropriate classifiers like tree-based ensembles or support vector machines, which can handle high dimensionality. Finally, a Random Forest classifier was chosen to deliver the classified input data for the estimation of evaporative water loss and net landscape irrigation requirements.
机译:由于旅游业发展的变化而导致的城市扩张,在地中海沿岸产生了新的郊区用水状况。高尔夫球场,观赏性,“大西洋”花园和游泳池是这一转变中最引人注目的艺术品,威胁着当地的供水系统,加剧了水资源短缺。面对气候变化,从资源管理的角度来看,城市景观灌溉变得越来越重要。本文采用机器学习技术和高分辨率卫星图像(WorldView-2)将城市遥感技术用于目标地图绘制方法,以生成可用于城市用水研究的GIS就绪信息。游泳池,植被和草皮草(作为植被的一个子集)被提取为耗水量的重要决定因素。对于图像分析,城市环境的复杂性质建议进行空间光谱分类,即光谱特征和空间描述符的互补使用。多尺度图像分割提供了提取空间描述符(即对象特征层)的手段,这些空间描述符可以在像素级别上与光谱特征连接。这项研究使用不同的机器学习技术和用于学习的标记信息量来评估对象特征的价值。结果表明,如果与适当的分类器(如可处理高维的基于树的集合或支持向量机)相结合,则可以使用空间光谱方法。最后,选择了一个随机森林分类器来提供分类的输入数据,以估算蒸发的水分损失和净灌溉需求。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号