首页> 外文会议>DNA computing and molecular programming >Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue
【24h】

Exact Shapes and Turing Universality at Temperature 1 with a Single Negative Glue

机译:带有单个负胶的温度1下的精确形状和图灵通用性

获取原文
获取原文并翻译 | 示例

摘要

Is Winfree's abstract Tile Assembly Model (aTAM) "powerful?" Well, if certain tiles are required to "cooperate" in order to be able to bind to a growing tile assembly (a.k.a., temperature 2 self-assembly), then Turing universal computation and the efficient self-assembly of N x N squares is achievable in the aTAM (Rotemund and Winfree, STOC 2000). So yes, in a computational sense, the aTAM is quite powerful! However, if one completely removes this cooperativity condition (a.k.a., temperature 1 self-assembly), then the computational "power" of the aTAM (i.e., its ability to support Turing universal computation and the efficient self-assembly of N × N squares) becomes unknown. On the plus side, the aTAM, at temperature 1, is not only Turing universal but also supports the efficient self-assembly N × N squares if self-assembly is allowed to utilize three spatial dimensions (Fu, Schweller and Cook, SODA 2011). In this paper, we investigate the theoretical "power" of a seemingly simple, restrictive variant of Winfree's aTAM in which (1) the absolute value of every glue strength is 1, (2) there is a single negative strength glue type and (3) unequal glues cannot interact (i.e., glue functions must be "diagonal"). We call this abstract model of self-assembly the restricted glue Tile Assembly Model (rgTAM). We achieve two positive results. First, we show that the tile complexity of uniquely producing an N x N square in the rgTAM is O(logiV). In our second result, we prove that the rgTAM is Turing universal.
机译:Winfree的抽象Tile Assembly Model(aTAM)是否“功能强大”?好吧,如果需要某些图块“协作”以便能够绑定到正在增长的图块组件(又称温度2自组装),则可以实现Turing通用计算和N x N平方的高效自组装在aTAM中(Rotemund和Winfree,STOC 2000)。因此,是的,在计算意义上,aTAM非常强大!但是,如果完全消除了这种协作性条件(也就是温度1自组装),那么aTAM的计算“能力”(即,它支持图灵通用计算的能力和N×N平方的有效自组装)变得未知。从正面来看,如果允许自组装利用三个空间维度,则温度为1时的aTAM不仅是图灵通用的,而且还支持有效的自组装N×N平方(Fu,Schweller和Cook,SODA 2011) 。在本文中,我们研究了Winfree aTAM的一个看似简单,限制性的变体的理论“功效”,其中(1)每种胶水强度的绝对值为1,(2)有一个负强度胶水类型,而(3) )不相等的胶水无法相互作用(即,胶水功能必须为“对角线”)。我们将这种自组装的抽象模型称为受限胶贴砖组装模型(rgTAM)。我们取得了两个积极成果。首先,我们证明在rgTAM中唯一生成N x N正方形的图块复杂度为O(logiV)。在第二个结果中,我们证明rgTAM是Turing通用的。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号