首页> 外文会议>Discrete Geometry for Computer Imagery; Lecture Notes in Computer Science; 4245 >Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations
【24h】

Quantised Angular Momentum Vectors and Projection Angle Distributions for Discrete Radon Transformations

机译:离散Radon变换的量化角动量矢量和投影角分布

获取原文
获取原文并翻译 | 示例

摘要

A quantum mechanics based method is presented to generate sets of digital angles that may be well suited to describe projections on discrete grids. The resulting angle sets are an alternative to those derived using the Farey fractions from number theory. The Farey angles arise naturally through the definitions of the Mojette and Finite Radon Transforms. Often a subset of the Farey angles needs to be selected when reconstructing images from a limited number of views. The digital angles that result from the quantisation of angular momentum (QAM) vectors may provide an alternative way to select angle subsets. This paper seeks first to identify the important properties of digital angles sets and second to demonstrate that the QAM vectors are indeed a candidate set that fulfils these requirements. Of particular note is the rare occurrence of degeneracy in the QAM angles, particularly for the half-integral angular momenta angle sets.
机译:提出了一种基于量子力学的方法来生成数字角度集,这些数字角度集非常适合描述离散网格上的投影。所得角度集是使用数论中的Farey分数推导的角度集的替代方案。通过Mojette和有限Radon变换的定义自然会产生Farey角。从有限数量的视图重建图像时,通常需要选择Farey角的子集。由角动量(QAM)矢量量化产生的数字角度可提供选择角度子集的替代方法。本文首先寻求确定数字角度集的重要属性,其次证明QAM向量确实是满足这些要求的候选集。特别要注意的是,QAM角很少发生简并性,特别是对于半积分角动量角集。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号