首页> 外文会议>Detection and sensing of mines, expolosive objects, and obscured targets XVIII >Sparse Model Inversion and Processing of Spatial Frequency-Domain Electromagnetic Induction Sensor Array Data for Improved Landmine Discrimination
【24h】

Sparse Model Inversion and Processing of Spatial Frequency-Domain Electromagnetic Induction Sensor Array Data for Improved Landmine Discrimination

机译:改进的地雷识别的空间频域电磁感应传感器阵列数据的稀疏模型反演和处理

获取原文
获取原文并翻译 | 示例

摘要

Frequency-domain electromagnetic induction (EMI) sensors have been shown to provide target signatures which enable discrimination of landmines from harmless clutter. In particular, frequency-domain EMI sensors are well-suited for target characterization by inverting a physics-based signal model. In many model-based signal processing paradigms, the target signatures can be decomposed into a weighted sum of parameterized basis functions, where the basis functions are intrinsic to the target under consideration and the associated weights are a function of the target sensor orientation. When sensor array data is available, the spatial diversity of the measured signals may provide more information for estimating the basis function parameters. After model inversion, the basis function parameters can form the foundation of model-based classification of the target as landmine or clutter. In this work, sparse model inversion of spatial frequency-domain EMI sensor array data followed by target classification using a statistical model is investigated. Results for data measured with a prototype frequency-domain EMI sensor at a standardized test site are presented. Preliminary results indicate that extracting physics-based features from spatial frequency-domain EMI sensor array data followed by statistical classification provides an effective approach for classifying targets as landmine or clutter.
机译:频域电磁感应(EMI)传感器已被证明可以提供目标特征,从而能够区分无害的地雷。特别是,通过反转基于物理的信号模型,频域EMI传感器非常适合目标特征。在许多基于模型的信号处理范例中,目标特征可以分解为参数化基函数的加权和,其中基函数是所考虑目标的固有特性,而相关权重是目标传感器方向的函数。当传感器阵列数据可用时,被测信号的空间分集可以提供更多信息来估计基本功能参数。模型反演后,基函数参数可以为基于模型的目标分类(地雷或杂波)奠定基础。在这项工作中,研究了空间频域EMI传感器阵列数据的稀疏模型反演,然后使用统计模型对目标进行了分类。给出了在标准测试现场使用原型频域EMI传感器测量的数据结果。初步结果表明,从空间频域EMI传感器阵列数据中提取基于物理学的特征,然后进行统计分类,为将目标分类为地雷或杂波提供了一种有效的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号