首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX >An Apodization Approach for Processing Forward-Looking GPR for Buried Target Detection
【24h】

An Apodization Approach for Processing Forward-Looking GPR for Buried Target Detection

机译:用于掩埋目标检测的处理前瞻性GPR的切趾方法

获取原文
获取原文并翻译 | 示例

摘要

A forward-looking and -moving ground-penetrating radar (GPR) acquires data that can be used for buried target detection. As the platform moves forward the sensor can acquire and form a sequence of images for a common spatial region. Due to the near-field nature of relevant collection scenarios, the point-spread Junction (PSF) varies significantly as a function of the spatial position, both within the scene and relative to the sensor platform. This variability of the PSF causes computational difficulties for matched-filter and related processing of the full video sequence. One approach to circumventing this difficulty is to coherently or incoherently integrate the video frames, and then perform detection processing on the integrated image. Here, averaging over the space- and motion-variant nature of the PSFs for each frame causes the PSF for the integrated image to appear less space-variant. Another alternative-and the one we investigate in this paper-is to transform each image from the conventional (range, cross-range) coordinate system to a (range, sine-angle) coordinate system in which the PSF is approximated as spatially invariant. The advantage of the (range, sine-angle) coordinate space is that methods that require space-invariance can be directly applied. Here we develop a multi-anodization approach, which results in a significantly improved image. To evaluate the relative advantages of this procedure, we will empirically measure the integrated side-lobe ratio, which represents the reduction in the side-lobes before and after applying the algorithm.
机译:前视和移动探地雷达(GPR)获取可用于掩埋目标检测的数据。随着平台向前移动,传感器可以获取并形成公共空间区域的图像序列。由于相关采集场景的近场性质,点扩展结(PSF)随场景内以及相对于传感器平台的空间位置而变化很大。 PSF的这种可变性导致匹配滤波器的计算困难以及整个视频序列的相关处理。避免此困难的一种方法是相干或不相干地集成视频帧,然后对集成的图像执行检测处理。在此,对每帧PSF的空间和运动变量性质进行平均会导致集成图像的PSF出现较小的空间变量。另一种替代方法(也是我们在本文中研究的替代方法)是将每个图像从常规(范围,跨范围)坐标系转换为其中PSF近似为空间不变的(范围,正弦角)坐标系。 (范围,正弦角)坐标空间的优点是可以直接应用需要空间不变性的方法。在这里,我们开发了一种多阳极氧化方法,可以显着改善图像。为了评估此过程的相对优势,我们将根据经验测量积分旁瓣比率,该比率表示应用该算法之前和之后旁瓣的减少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号