首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XX >Extended Adaptive Mutation Operator for Training an Explosive Hazard Detection Prescreener in Forward Looking Infrared Imagery
【24h】

Extended Adaptive Mutation Operator for Training an Explosive Hazard Detection Prescreener in Forward Looking Infrared Imagery

机译:扩展的自适应变异算子,用于训练前视红外图像中的爆炸危险检测预筛选器

获取原文
获取原文并翻译 | 示例

摘要

A big challenge with forward looking (FL), versus downward looking, sensors mounted on a ground vehicle for explosive hazard detection (EHD) is they "see everything", on and off road. Even if a technology such as road detection is used, we still have to find and subsequently discriminate targets versus clutter on the road and often road side. When designing an automatic detection system for FL-EHD, we typically make use of a prescreener to identify regions of interest (ROI) instead of searching for targets in an inefficient brute force fashion by extracting complicated features and running expensive classifiers at every possible translation, rotation and scale. In this article, we explore the role of genetic algorithms (GAs), specifically with respect to a new adaptive mutation operator, for learning the parameters of a FL-EHD prescreener in FL infrared (FLIR) imagery. The proposed extended adaptive mutation (eAM) algorithm is driven by fitness similarities in the chromosome population. Currently, our prescreener consists of many free parameters that are empirically chosen by a researcher. The parameters are learned herein using the proposed optimization technique and the performance of the system is measured using receiver operating characteristic (ROC) curves on data obtained from a U.S. Army test site that includes a variety of target types buried at varying depths and from different times of day. The proposed technique is also applied to numerous synthetic fitness landscapes to further assess the effectiveness of the eAM algorithm. Results show that the new adaptive mutation technique converges faster to a better solution than a GA with fixed mutation.
机译:安装在地面车辆上以进行爆炸危险检测(EHD)的前视传感器与下视传感器相比,面临的一大挑战是在道路上和越野时都能“看到一切”。即使使用诸如道路检测之类的技术,我们仍然必须找到并随后区分目标以及道路上(通常是路边)的混乱情况。在为FL-EHD设计自动检测系统时,我们通常会使用预筛选器来识别感兴趣区域(ROI),而不是通过提取复杂的特征并在每次可能的翻译中运行昂贵的分类器来以低效的蛮力方式搜索目标,旋转和缩放。在本文中,我们探讨了遗传算法(GA)的作用,特别是对于新的自适应突变算子,以学习FL红外(FLIR)图像中的FL-EHD预筛选器的参数。提出的扩展自适应变异(eAM)算法是由染色体群体中的适应度相似性驱动的。目前,我们的预筛选器由研究人员凭经验选择的许多自由参数组成。本文中使用建议的优化技术来学习参数,并使用接收机工作特性(ROC)曲线对从美国陆军测试点获得的数据进行测量,以测量系统的性能,该数据包括埋在不同深度和不同时间的各种目标类型的一天。所提出的技术也被应用于许多综合适应度环境,以进一步评估eAM算法的有效性。结果表明,与具有固定突变的GA相比,新的自适应突变技术可以更快地收敛到更好的解决方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号