首页> 外文会议>Detection and Sensing of Mines, Explosive Objects, and Obscured Targets XIII >Adaptive Spatial Sampling Schemes for the Detection of Minefields in Hyperspectral Imagery
【24h】

Adaptive Spatial Sampling Schemes for the Detection of Minefields in Hyperspectral Imagery

机译:用于高光谱图像雷场检测的自适应空间采样方案

获取原文
获取原文并翻译 | 示例

摘要

Often in hyperspectral overhead land mine imagery, there exists clutter with similar spatial and spectral characteristics to those of land mines. However groups of clutter features are rarely related spatially in the same way that groups of mines are related. For this reason, recognition of field patterns in overhead land mine imagery is critical to the detection of mine fields. The material presented here addresses means by which to spatially sample overhead hyperspectral imagery for the accentuation of mine field patterns. Our initial approach is to assume that the mines are laid out in a particular field pattern. We then search for spectral anomalies that are spatially distributed according to such a pattern. For this purpose, we utilize an RX detector with locally estimated mean and covariance matrix. We then use the pattern to predict the locations of additional mines. These locations provide us with search regions for the use of a second anomaly detector, in this case we use an anomaly detector based upon an eigenspace separation transform. Examples are provided using LWIR imagery.
机译:通常在高光谱架空地雷图像中,存在与地雷具有类似的空间和光谱特征的杂波。但是,杂波特征组很少像地雷组相关那样在空间上相关。因此,识别高架地雷图像中的场模式对于检测雷场至关重要。此处介绍的材料着眼于对高架高光谱图像进行空间采样以强调雷场图案的手段。我们最初的方法是假设地雷以特定的田间模式布置。然后,我们根据这种模式搜索在空间上分布的频谱异常。为此,我们利用具有局部估计均值和协方差矩阵的RX检测器。然后,我们使用该模式来预测其他地雷的位置。这些位置为我们提供了使用第二个异常检测器的搜索区域,在这种情况下,我们使用基于特征空间分离变换的异常检测器。使用LWIR图像提供了示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号