首页> 外文会议>Detection and Remediation Technologies for Mines and Minelike Targets XII; Proceedings of SPIE-The International Society for Optical Engineering; vol.6553 >Visual detection, recognition, and classification of surface-buried UXO based on soft-computing decision fusion
【24h】

Visual detection, recognition, and classification of surface-buried UXO based on soft-computing decision fusion

机译:基于软计算决策融合的地埋式UXO的视觉检测,识别和分类

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we have addressed the problem of visual inspection, recognition, and discrimination of UXO based on computer vision techniques and introduced three complimentary color, texture, and shape classifiers. The proposed technique initially enhances an image taken from an UXO site and removes terrain background. Next, it applies a blob detector to detect the salient objects of the environment. The UXO classification begins with a perceptive color classifier that classifies the found salient objects based on their color hues. The color classifier attempts to differentiate and classify the color of salient objects based on the color hue information of some known UXO objects in the database. A color ranking scheme is applied for ranking color hue likelihood of the salient objects in the environment. Next, an intuitive texture classifier is applied to characterize the surface texture of the salient objects. The texture signature is used to disjointedly discriminate objects whose surface texture properties matching the priori known UXO textures. Lasting, an intuitive Object Shape Classifier is applied to independently arbitrate the classification of the UXO. Three soft computing methods were developed for robust decision fusion of three UXO feature classifiers. These soft computing techniques include: a statistical-based genetic algorithm, a hamming neural network, and a fuzzy logic algorithm. In this paper, we present details of the UXO feature classifiers and discuss the performance of three decision fusion methods for fusion of results from the three UXO feature classifiers. The main contributing factor of this work is toward designing an ultimate fully-automated tele-robotic system for UXO classification and decontamination.
机译:在本文中,我们基于计算机视觉技术解决了UXO的视觉检查,识别和辨别问题,并介绍了三种互补的颜色,纹理和形状分类器。所提出的技术最初会增强从UXO站点获取的图像并消除地形背景。接下来,它使用斑点检测器来检测环境的显着物体。 UXO分类以可感知的颜色分类器开始,该分类器根据找到的显着对象的颜色对它们进行分类。颜色分类器尝试根据数据库中某些已知UXO对象的色相信息来区分和区分突出对象的颜色。应用颜色分级方案来对环境中显着物体的色相可能性进行分级。接下来,应用直观的纹理分类器来表征突出对象的表面纹理。纹理签名用于不区分对象,其表面纹理属性与先验UXO纹理匹配。持久地,使用直观的对象形状分类器来独立仲裁UXO的分类。开发了三种软计算方法,用于三个UXO特征分类器的鲁棒决策融合。这些软计算技术包括:基于统计的遗传算法,汉明神经网络和模糊逻辑算法。在本文中,我们介绍了UXO特征分类器的详细信息,并讨论了三种决策融合方法的性能,用于融合来自三个UXO特征分类器的结果。这项工作的主要贡献因素在于为UXO分类和净化设计终极的全自动遥控机器人系统。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号