首页> 外文会议>Detection and Remediation Technologies for Mines and Minelike Targets XII; Proceedings of SPIE-The International Society for Optical Engineering; vol.6553 >SPICE: A Sparsity Promoting Iterated Constrained Endmember Extraction Algorithm with Applications to Landmine Detection from Hyperspectral Imagery
【24h】

SPICE: A Sparsity Promoting Iterated Constrained Endmember Extraction Algorithm with Applications to Landmine Detection from Hyperspectral Imagery

机译:SPICE:一种稀疏性促进迭代约束末端成员提取算法及其在高光谱图像地雷检​​测中的应用

获取原文
获取原文并翻译 | 示例

摘要

An extension of the Iterated Constrained Endmembers (ICE) algorithm that incorporates sparsity promoting priors to find the correct number of endmembers is presented. In addition to solving for endmembers and endmember fractional maps, this algorithm attempts to autonomously determine the number of endmembers required for a particular scene. The number of endmembers is found by adding a sparsity-promoting term to ICE's objective function. This method is applied to long wave infrared, LWIR, hyperspectral data to seek out vegetation endmembers and define a vegetation mask for the reduction of false alarms in landmine data.
机译:提出了迭代约束最终成员(ICE)算法的扩展,该算法结合了稀疏性促进先验以找到正确数量的最终成员。除了求解最终成员和最终成员分数图之外,该算法还尝试自动确定特定场景所需的最终成员数量。通过在ICE的目标函数中添加稀疏度提升项来找到最终成员的数量。该方法适用于长波红外,LWIR,高光谱数据,以寻找植被末端成员并定义植被遮罩,以减少地雷数据中的误报。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号