首页> 外文会议>Detection of Intrusions and Malware, and Vulnerability Assessment >Dynamic Binary Instrumentation-Based Framework for Malware Defense
【24h】

Dynamic Binary Instrumentation-Based Framework for Malware Defense

机译:基于动态二进制工具的恶意软件防御框架

获取原文
获取原文并翻译 | 示例

摘要

Malware is at the root of a large number of information security breaches. Despite widespread effort devoted to combating malware, current techniques have proven to be insufficient in stemming the incessant growth in malware attacks. In this paper, we describe a tool that exploits a combination of virtualized (isolated) execution environments and dynamic binary instrumentation (DBI) to detect malicious software and prevent its execution. We define two isolated environments: (i) a Testing environment, wherein an untrusted program is traced during execution using DBI and subjected to rigorous checks against extensive security policies that express behavioral patterns of malicious software, and (ii) a Real environment, wherein a program is subjected to run-time monitoring using a behavioral model (in place of the security policies), along with a continuous learning process, in order to prevent non-permissible behavior. We have evaluated the proposed methodology on both Linux and Windows XP operating systems, using several virus benchmarks as well as obfuscated versions thereof. Experiments demonstrate that our approach achieves almost complete coverage for original and obfuscated viruses. Average execution times go up to 28.57X and 1.23X in the Testing and Real environments, respectively. The high overhead imposed in the Testing environment does not create a severe impediment since it occurs only once and is transparent to the user. Users are only affected by the overhead imposed in the Real environment. We believe that our approach has the potential to improve on the state-of-the-art in malware detection, offering improved accuracy with low performance penalty.
机译:恶意软件是大量信息安全漏洞的根源。尽管已投入大量精力来对抗恶意软件,但事实证明,当前的技术不足以阻止恶意软件攻击的持续增长。在本文中,我们描述了一种工具,该工具利用虚拟化(隔离)执行环境和动态二进制工具(DBI)的组合来检测恶意软件并阻止其执行。我们定义了两个隔离的环境:(i)测试环境,其中使用DBI在执行过程中跟踪不受信任的程序,并针对表示恶意软件行为模式的广泛安全策略进行严格检查,以及(ii)真实环境,其中使用行为模型(代替安全策略)对程序进行运行时监视,并进行持续学习,以防止发生不允许的行为。我们已经使用几种病毒基准及其混淆的版本对Linux和Windows XP操作系统上的建议方法进行了评估。实验表明,我们的方法几乎可以完全覆盖原始病毒和混淆病毒。在“测试”和“真实”环境中,平均执行时间分别达到28.57倍和1.23倍。在测试环境中施加的高开销不会造成严重的阻碍,因为它只发生一次并且对用户透明。用户仅受Real环境中施加的开销影响。我们相信,我们的方法有可能改进恶意软件检测的最新技术,从而以较低的性能损失提供更高的准确性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号