首页> 外文会议>Design-Process-Technology Co-optimization for Manufacturability IX >A methodology to optimize design pattern context size for higher sensitivity to hotspot detection using pattern association tree (PAT)
【24h】

A methodology to optimize design pattern context size for higher sensitivity to hotspot detection using pattern association tree (PAT)

机译:一种优化设计模式上下文大小的方法,以便使用模式关联树(PAT)对热点检测具有更高的敏感性

获取原文
获取原文并翻译 | 示例

摘要

Pattern based design rule checks have emerged as an alternative to the traditional rule based design rule checks in the VLSI verification flow. Typically, the design-process weak-points, also referred as design hotspots, are classified into patterns of fixed size. The size of the pattern defines the radius of influence for the process. These fixed sized patterns are used to search and detect process weak points in new designs without running computationally expensive process simulations. However, both the complexity of the pattern and different kinds of physical processes affect the radii of influence. Therefore, there is a need to determine the optimal pattern radius (size) for efficient hotspot detection. The methodology described here uses a combination of pattern classification and pattern search techniques to create a directed graph, referred to as the Pattern Association Tree (PAT). The pattern association tree is then filtered based on the relevance, sensitivity and context area of each pattern node. The critical patterns are identified by traversing the tree and ranking the patterns. This method has plausible applications in various areas such as process characterization, physical design verification and physical design optimization. Our initial experiments in the area of physical design verification confirm that a pattern deck with the radius optimized for each pattern is significantly more accurate at predicting design hotspots when compared to a conventional deck of fixed sized patterns.
机译:在VLSI验证流程中,基于模式的设计规则检查已成为传统的基于规则的设计规则检查的替代方法。通常,设计过程的弱点(也称为设计热点)被分为固定大小的模式。模式的大小定义了过程的影响半径。这些固定大小的模式用于搜索和检测新设计中的过程薄弱点,而无需运行计算上昂贵的过程仿真。但是,图案的复杂性和不同种类的物理过程都会影响影响半径。因此,需要确定用于有效热点检测的最佳图案半径(尺寸)。此处描述的方法结合了模式分类和模式搜索技术来创建有向图,称为模式关联树(PAT)。然后根据每个模式节点的相关性,敏感性和上下文区域对模式关联树进行过滤。关键模式通过遍历树并对模式进行排名来识别。该方法在过程表征,物理设计验证和物理设计优化等各个领域具有合理的应用。我们在物理设计验证领域的初步实验证实,与固定大小的常规模板相比,针对每个模式优化半径的模板可以更准确地预测设计热点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号