首页> 外文会议>Design and analysis of algorithms >Detecting Approximate Periodic Patterns
【24h】

Detecting Approximate Periodic Patterns

机译:检测近似周期模式

获取原文
获取原文并翻译 | 示例

摘要

Given ε ∈ [0,1), the ε-Relative Error Periodic Pattern Problem (REPP) is the following: INPUT: An n-long sequence S of numbers s_i ∈ N in increasing order. OUTPUT: The longest e-relative error periodic pattern, i.e., the longest subsequence s_(i_1), S_(i_2),..., S_(i_k) of S, for which there exists a number p such that the absolute difference between any two consecutive numbers in the subsequence is at least p and at most p(1 + ε). The best known algorithm for this problem has O(n~3) time complexity. This bound is too high for large inputs in practice. In this paper we give a new algorithm for finding the longest ε-relative error periodic pattern (the REPP problem). Our method is based on a transformation of the input sequence into a different representation: the ε-active maximal intervals list L, defined in this paper. We show that the transformation of S to the list L can be done efficiently (quadratic in n and linear in the size of L) and prove that our algorithm is linear in the size of L. This enables us to prove that our algorithm works in sub-cubic time on inputs for which the best known algorithm works in O(n~3) time. Moreover, though it may happen that our algorithm would still be cubic, it is never worse than the known O(n~3 )-algorithm and in many situations its complexity is O(n~2) time.
机译:给定ε∈[0,1),则ε相对误差周期性模式问题(REPP)为:INPUT:n序数为s_i∈N的n序列S。输出:最长的e相对误差周期性模式,即S的最长子序列s_(i_1),S_(i_2),...,S_(i_k),其存在数量p,使得两者之间的绝对差子序列中的任何两个连续数字至少为p,最多为p(1 +ε)。该问题的最著名算法具有O(n〜3)时间复杂度。在实践中,此界限对于大量输入而言太高了。在本文中,我们给出了一种寻找最长的ε相对误差周期性模式(REPP问题)的新算法。我们的方法基于将输入序列转换为不同的表示形式:本文定义的ε有效最大间隔列表L。我们证明了S到列表L的变换可以高效完成(n为二次,L的大小为线性),并证明我们的算法在L的大小上为线性。这使我们能够证明我们的算法在亚三次时间输入,最著名的算法在O(n〜3)时间内起作用。而且,尽管我们的算法可能仍然是三次的,但它永远不会比已知的O(n〜3)算法差,并且在许多情况下其复杂度为O(n〜2)次。

著录项

  • 来源
  • 会议地点 Kibbutz Ein Gedi(IL)
  • 作者单位

    Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel,Department of Computer Science, Johns Hopkins University, Baltimore, MD 21218;

    College of Computing, Georgia Institute of Technology, 801 Atlantic Drive, Atlanta, GA 30318, USA,Dipartimento di Ingegneria dell' Informazione, Universita diPadova, Via Gradenigo 6/A, 35131 Padova, Italy;

    Department of Computer Science, Bar-Ilan University, Ramat-Gan 52900, Israel;

    Department of Computer Science, University of Haifa, Mount Carmel, Haifa 31905, Israel,Department of Computer Science and Engineering. Polytechnic Institute of New York University, 6 Metrotech Center, Brooklyn, NY 11201;

    Department of Software Engineering, Shenkar College, 12 Anna Frank, Ramat-Gan, Israel,CRI, Haifa University, Mount Carmel, Haifa 31905, Israel;

    Netanya College, Netanya, Israel;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号