首页> 外文会议>Dependable Computing, 2009. PRDC '09 >Quantitative Intrusion Intensity Assessment Using Important Feature Selection and Proximity Metrics
【24h】

Quantitative Intrusion Intensity Assessment Using Important Feature Selection and Proximity Metrics

机译:使用重要特征选择和邻近度指标的定量入侵强度评估

获取原文

摘要

The problem of previous approaches in anomaly detection in Intrusion Detection System (IDS) is to provide only binary detection resu intrusion or normal. This is a main cause of high false rates and inaccurate detection rates in IDS. In this paper, we propose a new approach named Quantitative Intrusion Intensity Assessment (QIIA). QIIA exploits feature selection and proximity metrics computation so that it provides intrusion (or normal) quantitative intensity value. It is capable of representing how an instance of audit data is proximal to intrusion or normal in the form of a numerical value. Prior to applying QIIA to audit data, we perform feature selection and parameters optimization of detection model in order not only to decrease the overheads to process audit data but also to enhance detection rates. QIIA then is performed using Random Forest (RF) and it generates proximity metrics which represent the intrusion intensity in a numerical way. The numerical values are used to determine whether unknown audit data is intrusion or normal. We carry out several experiments on KDD 1999 dataset and show the evaluation results.
机译:入侵检测系统(IDS)中异常检测的先前方法的问题是仅提供二进制检测结果。入侵或正常。这是IDS中高错误率和不正确检测率的主要原因。在本文中,我们提出了一种名为定量入侵强度评估(QIIA)的新方法。 QIIA利用特征选择和邻近度度量计算来提供入侵(或正常)定量强度值。它能够以数值的形式表示审计数据实例如何接近入侵或法线。在将QIIA应用于审核数据之前,我们执行特征选择和检测模型的参数优化,以不仅减少处理审核数据的开销,而且提高检测率。然后,使用随机森林(RF)执行QIIA,它会生成以数字方式表示入侵强度的接近度度量。数值用于确定未知审核数据是入侵还是正常。我们对KDD 1999数据集进行了几次实验,并显示了评估结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号