首页> 外文会议>Dependable, Autonomic and Secure Computing, 2009. DASC '09 >Generating an Approximately Optimal Detector Set by Evolving Random Seeds
【24h】

Generating an Approximately Optimal Detector Set by Evolving Random Seeds

机译:通过演化随机种子生成近似最佳检测器集

获取原文

摘要

The detector generation algorithm is the core of a Negative Selection Algorithm (NSA). In most previous work, the NSAs generate the detector set randomly, which cannot guarantee to obtain an efficient detector set. To generate an approximately optimal detector set, in this paper, a novel detector generation algorithm for the Real-Valued Negative Selection Algorithm (RNSA) is proposed. The proposed algorithm, named as the EvoSeedRNSA, adopts a genetic algorithm to evolve the random seeds to obtain an optimized detector set. The experimental results demonstrate that the EvoSeedRNSA has a better performance.
机译:检测器生成算法是否定选择算法(NSA)的核心。在大多数以前的工作中,NSA会随机生成检测器集,这不能保证获得有效的检测器集。为了生成近似最优的检测器集,本文提出了一种新的针对实值负选择算法(RNSA)的检测器生成算法。提出的算法称为EvoSeedRNSA,它采用遗传算法对随机种子进行进化,以获得优化的检测器集。实验结果表明,EvoSeedRNSA具有更好的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号