【24h】

Locality and Network-Aware Reduce Task Scheduling for Data-Intensive Applications

机译:本地性和网络感知减少了数据密集型应用程序的任务调度

获取原文
获取原文并翻译 | 示例

摘要

MapReduce is one of the leading programming frameworks to implement data-intensive applications by splitting the map and reduce tasks to distributed servers. Although there has been substantial amount of work on map task scheduling and optimization in the literature, the work on reduce task scheduling is very limited. Effective scheduling of the reduce tasks to the resources becomes especially important for the performance of data-intensive applications where large amounts of data are moved between the map and reduce tasks. In this paper, we propose a new algorithm (LoNARS) for reduce task scheduling, which takes both data locality and network traffic into consideration. Data locality awareness aims to schedule the reduce tasks closer to the map tasks to decrease the delay in data access as well as the amount of traffic pushed to the network. Network traffic awareness intends to distribute the traffic over the whole network and minimize the hotspots to reduce the effect of network congestion in data transfers. We have integrated LoNARS into Hadoop-1.2.1. Using our LoNARS algorithm, we achieved up to 15% gain in data shuffling time and up to 3-4% improvement in total job completion time compared to the other reduce task scheduling algorithms. Moreover, we reduced the amount of traffic on network switches by 15% which helps to save energy consumption considerably.
机译:MapReduce是领先的编程框架之一,可通过拆分地图并将任务减少到分布式服务器来实现数据密集型应用程序。尽管文献中已经有大量的地图任务调度和优化工作,但减少任务调度的工作非常有限。有效地安排归约任务到资源的时间对于数据密集型应用程序的性能尤为重要,在该应用程序中,大量数据在映射和归约任务之间移动。在本文中,我们提出了一种用于减少任务调度的新算法(LoNARS),该算法同时考虑了数据局部性和网络流量。数据位置感知的目的是将简化任务安排在与地图任务更近的位置,以减少数据访问的延迟以及推送到网络的流量。网络流量意识旨在将流量分布在整个网络上,并最大程度地减少热点,以减少数据传输中网络拥塞的影响。我们已将LoNARS集成到Hadoop 1.2.1中。与其他减少任务调度算法相比,使用我们的LoNARS算法,我们可以将数据混排时间提高15%,并将总的工作完成时间提高3-4%。此外,我们将网络交换机上的流量减少了15%,这有助于节省大量能源。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号