首页> 外文会议>Data Warehousing and Knowledge Discovery; Lecture Notes in Computer Science; 4081 >EGEA : A New Hybrid Approach Towards Extracting Reduced Generic Association Rule Set (Application to AML Blood Cancer Therapy)
【24h】

EGEA : A New Hybrid Approach Towards Extracting Reduced Generic Association Rule Set (Application to AML Blood Cancer Therapy)

机译:EGEA:一种新的混合方法,用于提取简化的通用关联规则集(在AML血液癌治疗中的应用)

获取原文
获取原文并翻译 | 示例

摘要

To avoid obtaining an unmanageable highly sized association rule sets- compounded with their low precision- that often make the perusal of knowledge ineffective, the extraction and exploitation of compact and informative generic basis of association rules is a becoming a must. Moreover, they provide a powerful verification technique for hampering gene mis-annotating or badly clustering in the Unigene library. However, extracted generic basis is still oversized and their exploitation is impractical. Thus, providing critical nuggets of extra-valued knowledge is a compellingly addressable issue. To tackle such a drawback, we propose in this paper a novel approach, called EGEA (Evolutionary Gene Extraction Approach). Such approach aims to considerably reduce the quantity of knowledge, extracted from a gene expression dataset, presented to an expert. Thus, we use a genetic algorithm to select the more predictive set of genes related to patient situations. Once, the relevant attributes (genes) have been selected, they serve as an input for a second approach stage, i.e., extracting generic association rules from this reduced set of genes. The notably decrease of the generic association rule cardinality, extracted from the selected gene set, permits to improve the quality of knowledge exploitation. Carried out experiments on a benchmark dataset pointed out that among this set, there are genes which are previously unknown prognosis-associated genes. This may serve as molecular targets for new therapeutic strategies to repress the relapse of pediatric acute myeloid leukemia (AML).
机译:为了避免获得难以管理的,庞大的关联规则集以及低精度,这些规则集通常会使知识的学习变得无效,提取和利用紧凑而翔实的关联规则的通用基础已成为必须。此外,它们提供了一种强大的验证技术,可以防止基因在Unigene库中的错误注释或严重聚类。但是,提取的通用基础仍然过大,对其进行开发是不切实际的。因此,提供附加值知识的关键要素是一个非常引人注意的问题。为了解决这一缺点,我们在本文中提出了一种新颖的方法,称为EGEA(进化基因提取方法)。这种方法旨在大大减少从基因表达数据集中提取的知识量。因此,我们使用遗传算法来选择与患者情况相关的更具预测性的基因集。一旦选择了相关的属性(基因),它们将作为第二个方法阶段的输入,即从此减少的基因集中提取通用关联规则。从所选基因集中提取的通用关联规则基数显着降低,可以提高知识开发的质量。在基准数据集上进行的实验指出,在这组数据中,有一些以前未知的与预后相关的基因。这可以作为抑制小儿急性髓细胞性白血病(AML)复发的新治疗策略的分子靶标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号