首页> 外文会议>Data mining X : Data mining, protection, detection and other security technologies >Real-time spatio-temporal data mining with the 'streamonas' data stream management system
【24h】

Real-time spatio-temporal data mining with the 'streamonas' data stream management system

机译:利用“ streamonas”数据流管理系统实时进行时空数据挖掘

获取原文
获取原文并翻译 | 示例

摘要

Data Stream Management Systems (DSMSs) have not yet reached a mature enough stage to effectively run data mining algorithms, as they still face challenges within the streaming environment. Streamonas DSMS, as presented in a recent publication, is the first DSMS to reach the maximum level of difficulty supported by the Linear Road Benchmark which is 10 Expressways. The powerful engine of Streamonas can manage an input stream of 20,368 tuples/second with an average query latency of 0.000026 seconds, 192,307 times faster when compared to the 5 seconds maximum query latency the benchmark allows. The on-line data mining over streams presented in this work, is the first effort to apply spatio-temporal data mining algorithms on the Streamonas DSMS system. Dynamic clustering of spatio-temporal subsequences in real-time has been performed successfully, within the large space, high bandwidth, heavy load linear road benchmark streaming platform. Dynamic clustering queries have been expressed in a novel SQL-like language, which we name Streamonas-SQL.
机译:数据流管理系统(DSMS)尚未达到足以有效运行数据挖掘算法的成熟阶段,因为它们仍在流环境中面临挑战。最新出版物中介绍的Streamonas DSMS是第一个达到线性道路基准(10条高速公路)所支持的最大难度水平的DSMS。 Streamonas的强大引擎可以管理20,368个元组/秒的输入流,平均查询延迟为0.000026秒,比基准测试允许的5秒最大查询延迟快192,307倍。本文中介绍的基于流的在线数据挖掘是在Streamonas DSMS系统上应用时空数据挖掘算法的首次尝试。在大空间,高带宽,重负载的线性道路基准流媒体平台上,成功地实时执行了时空子序列的动态聚类。动态集群查询已经用一种新颖的类似于SQL的语言表示,我们将其命名为Streamonas-SQL。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号