首页> 外文会议>Data Mining and Knowledge Discovery: Theory, Tools, and Technology II >Distributed data mining: an attribute-oriented key-preserving method
【24h】

Distributed data mining: an attribute-oriented key-preserving method

机译:分布式数据挖掘:一种面向属性的密钥保存方法

获取原文
获取原文并翻译 | 示例

摘要

Abstract: Data mining algorithms are constantly being challenged by the need to process large data volumes efficiently. Attribute- Oriented Induction (AOI) is an inductive set-oriented technique used to mine large data by reducing its search space through attribute generalization and form summary rules. Most data mining techniques only end at producing rules for user analysis. The Key-Preserving method of AOI (AOI-KP) allows users to query data related to the learning task efficiently by using keys (attributes that index relations) to relations in the database and the generated rules. However, the initial problem is loading the whole data set into memory on a single memory machine. As data input size increases, the preserved keys and the data itself use up memory. Further, to solve the file I/O bottleneck for writing preserved keys, concurrency mechanisms were used on a single cluster of a Windows NT machine and improvements in execution time were obtained. One of the major solutions is to employ parallelism i.e. utilizing a distributed memory machine with explicit message passing. A Network of Workstations offers attractive scalability in terms of computational power and memory availability. We analyze performance of our algorithm on NOW and compare speed-up and scalability, which showed significant improvements. !20
机译:摘要:数据挖掘算法一直受到有效处理大量数据需求的挑战。面向属性的归纳(AOI)是一种面向归纳的技术,用于通过属性归纳和形成摘要规则来减少大数据的搜索空间,从而挖掘大型数据。大多数数据挖掘技术仅以生成用户分析规则为终点。 AOI的密钥保存方法(AOI-KP)允许用户通过使用数据库中关系的键(索引关系的属性)和生成的规则来高效地查询与学习任务相关的数据。但是,最初的问题是将整个数据集加载到一台存储计算机上的内存中。随着数据输入大小的增加,保留的键和数据本身会占用内存。此外,为了解决用于写入保留密钥的文件I / O瓶颈,在Windows NT计算机的单个群集上使用了并发机制,并获得了执行时间的改进。主要的解决方案之一是采用并行性,即利用具有显式消息传递的分布式存储机器。工作站网络在计算能力和内存可用性方面提供了有吸引力的可伸缩性。我们分析了算法在NOW上的性能,并比较了速度和可伸缩性,这显示出显着的改进。 !20

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号