首页> 外文会议>Cryptographic hardware and embedded systems-CHES 2009 >Elliptic Curve Scalar Multiplication Combining Yao's Algorithm and Double Bases
【24h】

Elliptic Curve Scalar Multiplication Combining Yao's Algorithm and Double Bases

机译:结合Yao算法和双基的椭圆曲线标量乘法

获取原文
获取原文并翻译 | 示例

摘要

In this paper we propose to take one step back in the use of double base number systems for elliptic curve point scalar multiplication. Using a modified version of Yao's algorithm, we go back from the popular double base chain representation to a more general double base system. Instead of representing an integer k as Σ_(i=1)~n 2~(b_i)3~(t_i) where (b_i) and (t_i) are two decreasing sequences, we only set a maximum value for both of them. Then, we analyze the efficiency of our new method using different bases and optimal parameters. In particular, we propose for the first time a binary/Zeckendorf representation for integers, providing interesting results. Finally, we provide a comprehensive comparison to state-of-the-art methods, including a large variety of curve shapes and latest point addition formulae speed-ups.
机译:在本文中,我们建议退后一步,将双基数系统用于椭圆曲线点标量乘法。使用姚(Yao)算法的修改版,我们从流行的双基链表示返回到更通用的双基系统。代替将整数k表示为Σ_(i = 1)〜n 2〜(b_i)3〜(t_i),其中(b_i)和(t_i)是两个递减序列,我们只为它们两个都设置了最大值。然后,我们使用不同的基准和最佳参数来分析新方法的效率。特别是,我们首次提出了整数的二进制/ Zeckendorf表示形式,提供了有趣的结果。最后,我们提供了与最先进方法的全面比较,包括各种曲线形状和最新的点加法公式加速。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号